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Towards spike-based machine intelligence 
with neuromorphic computing

Kaushik Roy1*, Akhilesh Jaiswal1 & Priyadarshini Panda1

Guided by brain-like ‘spiking’ computational frameworks, neuromorphic 

computing—brain-inspired computing for machine intelligence—promises to realize 

artificial intelligence while reducing the energy requirements of computing 

platforms. This interdisciplinary field began with the implementation of silicon 

circuits for biological neural routines, but has evolved to encompass the hardware 

implementation of algorithms with spike-based encoding and event-driven 

representations. Here we provide an overview of the developments in neuromorphic 

computing for both algorithms and hardware and highlight the fundamentals of 

learning and hardware frameworks. We discuss the main challenges and the future 

prospects of neuromorphic computing, with emphasis on algorithm–hardware 

codesign.

Throughout history, the promise of creating technology with brain-like 

ability has been a source of innovation. Previously, scientists have con-

tended that information transfer in the brain occurs through different 

channels and frequencies, as in a radio. Today, scientists argue that the 

brain is like a computer. With the development of neural networks, 

computers today have demonstrated extraordinary abilities in several 

cognition tasks—for example, the ability of AlphaGo to defeat human 

players at the strategic board game Go1. Although this performance is 

truly impressive, a key question still remains: what is the computing 

cost involved in such activities?

The human brain performs impressive feats (for example, simulta-

neous recognition, reasoning, control and movement), with a power 

budget2 of nearly 20 W. By contrast, a standard computer performing 

only recognition among 1,000 different kinds of objects3 expends about 

250 W. Although the brain remains vastly unexplored, its remarkable 

capability may be attributed to three foundational observations from 

neuroscience: vast connectivity, structural and functional organiza-

tional hierarchy, and time-dependent neuronal and synaptic functional-

ity4,5 (Fig. 1a). Neurons are the computational primitive elements of the 

brain that exchange or transfer information through discrete action 

potentials or ‘spikes’, and synapses are the storage elements underly-

ing memory and learning. The human brain has a network of billions 

of neurons, interconnected through trillions of synapses. Spike-based 

temporal processing allows sparse and efficient information transfer in 

the brain. Studies have also revealed that the visual system of primates 

is organized as a hierarchical cascade of interconnected areas2 that 

gradually transforms the representation of an object into a robust 

format, facilitating perceptive abilities.

Inspired by the brain’s hierarchical structure and neuro-synaptic 

framework, state-of-the-art artificial intelligence is, by and large, imple-

mented using neural networks. In fact, modern deep-learning networks 

(DLNs) are essentially artefacts of hierarchy built by composing several 

layers or transformations that represent different latent features in the 

input6 (Fig. 1b). Such neural networks are fuelled by hardware comput-

ing systems that fundamentally rely on basic silicon transistors. Digital  

logic in massive computing platforms comprises billions of transis-

tors integrated on a single silicon die. Reminiscent of the hierarchical 

organization of the brain, various silicon-based computational aspects 

are arranged in a hierarchical fashion to allow efficient data exchange 

(see Fig. 1c).

Despite this superficial resemblance, there exists a sharp contrast 

between the computing principles of the brain and silicon-based 

computers. A few key differences include: (1) the segregation of com-

putations (the processing unit) and storage (the memory unit) in 

computers contrasts with the co-located computing (neurons) and stor-

age (synapses) mechanisms found in the brain; (2) the massive three- 

dimensional connectivity in the brain is currently beyond the reach 

of silicon technology, which is limited by two-dimensional connec-

tions and finite number of interconnecting metal layers and routeing 

protocols; and (3) transistors are largely used as switches to construct 

deterministic Boolean (digital) circuits, in contrast to the spike-based 

event-driven computations in the brain that are inherently stochastic7. 

Nevertheless, silicon computing platforms (for example, graphics 

processing unit (GPU) cloud servers) have been one of the enabling fac-

tors in the current deep-learning revolution. However, a major bottle-

neck prohibiting the realization of ‘ubiquitous intelligence’ (spanning 

cloud-based servers to edge devices) is the large energy and throughput 

requirement. For example, running a deep network on an embedded 

smart-glass processor supported by a typical 2.1 W h battery would 

drain  the battery completely within just 25 minutes (ref. 8).

Guided by the brain, hardware systems that implement neuronal 

and synaptic computations through spike-driven communication may 

enable energy-efficient machine intelligence. Neuromorphic com-

puting efforts (see Fig. 2) originated in the 1980s to mimic biological 

neuron and synapse functionality with transistors, quickly evolving 

to encompass the event-driven nature of computations (an artefact of 

discrete ‘spikes’). Eventually, in the early 2000s, such research efforts 

facilitated the emergence of large-scale neuromorphic chips. Today, 

the advantages and limitations of spike-driven computations (specifi-

cally, learning with ‘spikes’) are being actively explored by algorithm 
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designers to drive scalable, energy-efficient ‘spiking neural networks’ 

(SNNs). In this context, we can describe the field of neuromorphic 

computing as a synergistic effort that is equally weighted across both 

hardware and algorithmic domains to enable spike-based artificial 

intelligence. We first address the ‘intelligence’ (or algorithmic) aspects, 

including different learning mechanisms (unsupervised and super-

vised spike-based or gradient-descent schemes), while highlighting 

the need to exploit spatio-temporal event representations. A major-

ity of this discussion focuses on applications for vision and related 

tasks, such as image recognition and detection. We then investigate 

the ‘computation’ (or hardware) aspects including analog comput-

ing, digital neuromorphic systems, beyond both von Neumann (the 

state-of-the-art architecture for digital computing systems) and silicon 

(representing the basic field-effect-transistor device that fuels today’s 

computing platforms) technology. Finally, we discuss the prospects of 

algorithm–hardware codesign wherein algorithmic resilience can be 

used to counter hardware vulnerability, thereby achieving the optimal 

trade-off between energy efficiency and accuracy.

Algorithmic outlook
Spiking neural networks

The seminal paper from Maass9 categorizes neural networks into three 

generations based on their underlying neuronal functionality. The first 

generation, referred to as McCulloch–Pitt perceptrons, performs a 

thresholding operation resulting in a digital (1, 0) output10. The second 

generation—based on, for example, a sigmoid unit or a rectified linear 

unit11 (ReLU)—adds continuous nonlinearity to the neuronal unit, which 

enables it to evaluate a continuous set of output values. This nonlin-

earity upgrade between the first- and second-generation networks 

had a key role in enabling the scaling of neural networks for complex 

applications and deeper implementations. Current DLNs, which have 

multiple hidden layers between input and output, are all based on such 

second-generation neurons. In fact, owing to their continuous neuronal 

functionality, these models support gradient-descent-based back-

propagation learning12—the standard algorithm for training DLNs today. 

The third generation of networks use spiking neurons primarily of the 

‘integrate-and-fire’ type13 that exchange information via spikes (Fig. 3).

The most important distinction between the second- and third- 

generation networks is in the nature of information processing. The 

former generation uses real-valued computation (say, the amplitude of 

the signal), whereas SNNs use the timing of the signals (or the spikes) to 

process information. Spikes are essentially binary events, either 0 or 1. 

As can be seen in Fig. 3a, a neuronal unit in an SNN is only active when it 

receives or emits spikes—it is therefore event-driven, which can contrib-

ute to energy efficiency over a given period of time. SNN units that do 

not experience any events remain idle. This is in contrast to DLNs, in 

which all units are active irrespective of the real-valued input or output 
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Fig. 1 | Key attributes of biological and silicon-based computing 

frameworks. a, A schematic of the organizational principles of the brain. The 

intertwined network of neurons and synapses with temporal spike processing 

enables rapid and efficient flow of information between different areas.  

b, A deep convolutional neural network performing objection detection on an 

image. These networks are multi-layered and use synaptic storage and 

neuronal nonlinearity that learn broad representations about the data. After 

training using backpropagation12, the features learned at each layer show 

interesting patterns. The first layer learns general features such as edges and 

colour blobs. As we go deeper into the network, the learned features become 

more specific, representing object parts (such as the eyes or nose of the dog) to 

full objects (such as the face of the dog). Such generic-to-specific transition is 

representative of the hierarchical arrangement of the visual cortex. c, A state-

of-the-art silicon computing ecosystem. Broadly, the computing hierarchy is 

divided into processing units and memory storage. The physical separation of 

the processing unit and the memory hierarchy results in the well known 

‘memory wall bottleneck’94. Today’s deep neural networks are trained on 

powerful cloud servers, yielding incredible accuracy although incurring huge 

energy consumption.
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values. Furthermore, the fact that the inputs in an SNN are either 1 or 0 

reduces the mathematical dot-product operation, V w∑ ×i i i (detailed in 

Fig. 3a), to a less computationally intensive summation operation.

 Different spiking neuron models, such as leaky integrate-and-fire 

(LIF) (Fig. 3b) and Hodgkin–Huxley13, have been proposed to describe 

the generation of spikes at different levels of bio-fidelity. Similarly, 

for synaptic plasticity, schemes such as Hebbian14 and non-Hebbian 

have been proposed15. Synaptic plasticity—the modulation of synaptic 

weights, which translates to learning in SNNs—relies on the relative 

timing of pre- and post-synaptic spikes (Fig. 3c). A suitable spiking 

neuron model with proper synaptic plasticity while exploiting event-

based, data-driven updates (with event-based sensors16,17) is a major goal  

among neuromorphic engineers, to enable computationally efficient 

intelligence applications such as recognition and inference, among 

others.

Exploiting event-based data with SNNs

We believe that the ultimate advantage of SNNs comes from their ability 

to fully exploit spatio-temporal event-based information. Today, we have 

reasonably mature neuromorphic sensors16,18 that can record dynamic 

changes in activity from an environment in real-time. Such dynamic 

sensory data can be combined with the temporal processing capability 

of SNNs to enable extremely low-power computing. In fact, using time 

as an additional input dimension, SNNs record valuable information 

in a sparse manner, compared with the frame-driven approaches that 

are traditionally used by DLNs (see Fig. 3). This can lead to efficient 

implementation of SNN frameworks, computing optical visual flow19,20 

or stereo vision to achieve depth perception21,22, that, in combination 

with spike-based-learning rules, can yield efficient training. Researchers 

in the robotics community have already demonstrated the benefit of 

using event-based sensors for tracking and gesture recognition, among 

other applications19,21,22. However, most of these applications use a DLN 

to perform recognition. 

A major restriction in the use of SNNs with such sensors is the lack of 

appropriate training algorithms that can efficiently utilize the timing 

information of the spiking neurons. Practically, in terms of accuracy, 

SNNs are still behind their second-generation deep-learning counter-

parts in most learning tasks. It is evident that spiking neurons have 

a discontinuous functionality, and emit discrete spikes that are non-

differentiable (see Fig. 3); hence they cannot use the gradient-descent 

backpropagation techniques that are fundamental to conventional 

neural network training.

Another restriction on SNNs is spike-based data availability. Although 

the ideal situation requires the input to SNNs to be spike trains with 

timing information, the performance of SNN training algorithms is 

evaluated on existing static-image datasets, for example CIFAR23 or 

ImageNet24, for recognition. Such static-frame-based data are then 

converted to spike trains using appropriate encoding techniques, such 

as rate coding or rank-order coding25 (see Fig. 3d). Although encod-

ing techniques enable us to evaluate the performance of SNNs on tra-

ditional benchmark datasets, we need to move beyond static-image 

classification tasks. The ultimate competence of SNNs should arise 

from their capability to process and perceive continuous input streams 

from the ever-changing real world, just as our brains do effortlessly. 

At present, we have neither good benchmark datasets nor the metrics 

to evaluate such real-world performance of SNNs. More research into 

gathering appropriate benchmark datasets, such as dynamic vision 

sensor data26 or driving and navigation instances27,28, is vital.

(Here we refer to the second-generation continuous neural networks 

as DLNs to differentiate them from spike-based computing. We note 
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Fig. 2 | Timeline of major discoveries and advances in intelligent computing, 

from the 1940s to the present6, 10, 14, 73, 78, 84, 93, 105, 115, 136,150,151. For hardware, we have 

indicated discoveries from two perspectives—those motivated towards 

neuromorphic computing or that have enabled brain-like computations and 

‘intelligence’ with hardware innovations; and those motivated towards computing 

efficiency, or that have enabled faster and more energy-efficient Boolean 

computations. From an algorithmic perspective, we have indicated the discoveries 

as motivated towards understanding the brain, that is, driven by neuroscience and 

biological sciences; and motivated towards enabling artificial intelligence, that is, 

driven by engineering and applied sciences. Note that this is not a complete or 

comprehensive list of all discoveries. ‘Current research’ does not necessarily imply 

that such efforts have not been explored in the past; instead, we have emphasized 

key aspects of ongoing and promising research in the field.
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that SNNs can also be implemented on a deep architecture with con-

volutional hierarchy while performing spiking neuronal functions.)

Learning in SNNs
Conversion-based approaches

The idea of a conversion-based approach is to obtain an SNN that yields 

the same input–output mapping for a given task as that of a DLN. Essen-

tially, a trained DLN is converted to an SNN using weight rescaling and 

normalization methods to match the characteristics of a nonlinear 

continuous output neuron to that of the leak time constants, refractory 

period, membrane threshold and other functionalities of a spiking neu-

ron29–34. Such approaches have thus far been able to yield the most com-

petitive accuracy on large-scale spiking networks in image classification 

(including on the ImageNet dataset). In conversion-based approaches, 

the advantage is that the burden of training in the temporal domain is 

removed. A DLN is trained on frame-based data using available frame-

works such as Tensorflow35 that offer training-related flexibility. Conver-

sion requires parsing the trained DLN on event-based data (obtained 

by rate coding of the static-image dataset) and then applying simple 

transformations. However, such methods have inherent limitations. The 

output value of a nonlinear neuron—using, for example, a hyperbolic 

tangent (tanh) or a normalized exponential (softmax) function—can take 

both positive and negative values, whereas the rate of a spiking neuron 

can only be positive. Thus, negative values will always be discarded, 

leading to a decline in accuracy of the converted SNNs. Another problem 

with conversion is obtaining the optimal firing rate at each layer without 

any drastic performance loss. Recent works29–31 have proposed practical 

solutions to determine optimal firing rates, and additional constraints 

(such as noise or leaky ReLUs) are introduced during training of the DLN 

to better match the spiking neuron’s firing rate36. Today, conversion 

approaches yield state-of-the-art accuracy for image-recognition tasks 

that parallel the classification performance of DLNs. It is noteworthy 

that the inference time for SNNs that are converted from DLNs turns 

out be very large (of the order of a few thousand time steps), leading to 

increased latency as well as degraded energy efficiency.

Spike-based approaches 

In a spike-based approach, SNNs are trained using timing informa-

tion and therefore offer the obvious advantages of sparsity and effi-

ciency in overall spiking dynamics. Researchers have adopted two 

main directions37: unsupervised (training without labelled data), and 

supervised (training with labelled data). Early works in supervised 

learning were ReSuMe38 and the tempotron39, which demonstrate 

simple spike-based learning in a single-layer SNN using a variant of 

spike-timing-dependent plasticity (STDP) to perform classification. 

Since then, research efforts have been directed towards integrating 

global backpropagation-like spike-based error gradient descent to 

enable supervised learning in multi-layer SNNs. Most works that rely 

on backpropagation estimate a differentiable approximate function 

for the spiking neuronal functionality so that gradient descent can be 

performed (Fig. 4a). SpikeProp40 and related variants41,42 have derived 

a backpropagation rule for SNNs by fixing a target spike train at the 

output layer. Recent works43–46 perform stochastic gradient descent on 

real-valued membrane potentials with the goal that the correct output 

neuron will fire more spikes randomly (instead of having a precise tar-

get spike train). These methods have achieved state-of-the-art results 

for deep convolutional SNNs for small-scale image recognition tasks 

such as digit classification on the MNIST (Modified National Institute 

of Standards and Technology) handwritten digits database47. However, 

supervised learning—although more computationally efficient—has 

not been able to outperform conversion-based approaches in terms 

of accuracy for large-scale tasks.

On the other hand, inspired from neuroscience and with hardware-

efficiency as the prime goal, unsupervised SNN training using local 
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Fig. 3 | SNN computational models. a, A neural network, comprising a post-

neuron driven by input pre-neurons. The pre-neuronal spikes, Vi are modulated 

by synaptic weights, wi to produce a resultant current, V w∑ ×i i i (equivalent to a 

dot-product operation) at a given time. The resulting current affects the 

membrane potential of the post-neuron. b, The dynamics of LIF spiking neurons 

is shown. The membrane potential, Vmem integrates incoming spikes and leaks 

with time constant, τ in the absence of spikes. The post-neuron generates an 

outgoing spike whenever Vmem crosses a threshold, Vthresh. A refractory period 

ensues after spike generation, during which Vmem of the post-neuron is not 

affected. c, The spike-timing-dependent plasticity (STDP) formulation based on 

experimental data is shown, where a+, a−, τ+ and τ− are learning rates and time-

constants governing the weight change, Δw. The synaptic weights wi are updated 

on the basis of the time difference (Δt = tpost − tpre) between the pre-neuron and 

post-neuron spikes. d, An input image (static-frame data) is converted to a spike 

map over various time steps using rate coding. Each pixel generates a Poisson 

spike train with a firing rate proportional to the pixel intensity. When the spike 

maps are summed over several time steps (the spike map labelled t = 5 is a 

summation of maps from t = 1 to t = 5), they start to resemble the input. Hence, 

spike-based encoding preserves the integrity of the input image and also 

binarizes the data in the temporal domain. It is evident that LIF behaviour and 

random-input spike-generation bring stochasticity to the internal dynamics of 

an SNN. Note that rank-order coding can also be used to generate spike data25.
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STDP-based learning rules48 is also of great interest. With local learning 

(as we will see later in the hardware discussion), there are interest-

ing opportunities to bring memory (synaptic storage) and computa-

tion (neuronal output) closer together. This architecture turns out 

to be more brain-like, as well as suitable for energy-efficient on-chip 

implementations. Diehl et al.49 were one of the first to demonstrate 

completely unsupervised learning on an SNN, yielding comparable 

accuracy to deep learning on the MNIST database (Fig. 4b).

However, extending the local-learning approach to multiple layers 

for complex tasks is a challenge. As we go deeper into a network, the 

spiking probability (or the firing rate) of the neurons decreases, which 

we term ‘vanishing forward-spike propagation’. To avoid this, most 

works46,48,50–53 train a multi-layer SNN (including convolutional SNNs) 

with local spike-based learning in a layer-wise fashion followed by global 

backpropagation learning, to perform classification. Such combined 

local–global approaches, although promising, are still behind conver-

sion approaches in terms of classification accuracy. Further, recent 

works54,55 have shown proof-of-concept that the random projection of 

error signals through feedback connections in deep SNNs does enable 

improved learning. Such feedback-based learning methods need to 

be investigated further to estimate their efficacy on large-scale tasks.

Implications for learning in the binary regime

We can obtain extremely low-power and efficient computing with 

only binary (1/0) bit values rather than 16- or 32-bit floating point val-

ues that require additional memory. In fact, at the algorithmic level, 

learning in a probabilistic manner— wherein neurons spike randomly 

and weights have low-precision transitions—is being investigated to 

obtain networks with few parameters and computation operations56–58. 

Binary and ternary DLNs—in which the neuronal output and weights 

can take only the low-precision values −1, 0, and +1—have been pro-

posed, which yield good performance on large-scale classification 

tasks59,60. SNNs already have a computational advantage as a result 

of binary spike-based processing. Furthermore, the stochasticity in 

neuronal dynamics of LIF neurons can improve the robustness of a 

network to external noise (for example, noisy input or noisy weight 

parameters from hardware)61. Then, it remains to be seen whether we 

can use this SNN temporal-processing architecture with appropriate 

learning methods, and compress weight training to a binary regime 

with minimal accuracy loss.

Other underexplored directions
Beyond vision tasks

So far, we have laid out approaches that have provided competitive 

results in, mostly, classification tasks. What about tasks beyond per-

ception and inference on static images? SNNs offer an interesting 

opportunity for processing sequential data. However, there have 

been very few works34 that have demonstrated the efficacy of an SNN 

in natural-language-processing tasks. What about reasoning and 

decision making with SNNs? Deep-learning researchers are heavily 

invested in reinforcement-learning algorithms that cause a model 

to learn by interacting with the environment in real time. Reinforce-

ment learning with SNNs is very much underexplored62,63. The cur-

rent research efforts into SNNs—particularly in the area of training 

algorithms—shows that the grand challenge in SNNs is to match the 

0.5

–50 0 50
–0.5

0
W1

W2

Input

Hidden

Output

Weighted

connections

Output layerInput layer

STDP

Iteration 0 Iteration 10 Iteration 50

a b

X

A

Y

Forward propagation

Back propagation

Input spike train Output spike train

Δt

Δt

Δw

Forward

Backward

A = f (Z1) Z1 = W1
  X

Y = f (Z2)

E = (Y – T )2

Z2 = W2
  A

T

T

f ′ (Z2)

f ′ (Z2) exists if f is continuous, but f is a 

discontinuous LIF model. Therefore fapprox 

is used as a continuous approximate LIF 

for spike back propagation.

ΔW2 = 
∂E

∂W2

∂E

∂Y

∂Y

∂Z2

∂Z2

∂W2

∂E

∂W2

=

∂E

∂Y

∂Z2

∂W2

=

Fig. 4 | Global and local-learning principles in spiking networks.  

a, Supervised global learning with known target labels, T for a classification 

task. Given a feedforward network, the network forward-propagates the input 

values, X through hidden layer units, A to yield an output, Y. The neuronal 

activation values, A at the hidden layer are calculated using the weighted 

summation of inputs—denoted Z W X=1 1
T  in matrix notation, combined with a 

nonlinear transformation, ƒ(Z1). The outputs are calculated in a similar fashion. 

The derivative of the error, E with respect to the weights (W1, W2) is then used to 

calculate the subsequent weight updates. Iteratively conducting the forward 

and backward propagation results in learning. The calculation of error 

derivatives requires ƒ′, which necessitates that ƒ is continuous. Consequently, 

the rules of spike-based backpropagation approximate the LIF function with 

differentiable alternatives. The details of time-based information processing 

are not shown here. b, Local STDP unsupervised learning for digit 

classification. Given a two-layer topology with an input layer fully connected to 

all neurons in the output layer, the synaptic connections are learned through 

STDP. The weights are modulated on the basis of the difference in the spike 

timing of the input- and output-layer neurons. The weight value is increased (or 

decreased) if the input neuron fires before (or after) the output. With iterative 

training over multiple time steps, the weights—which were randomly initialized 

at the beginning—learn to encode a generic representation of a class of input 

patterns as shown (in this case, ‘0’, ‘1’ and ‘2’). Here, target labels are not 

required in order to perform recognition.
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performance of deep learning. Although deep-learning serves as a 

good baseline for comparison, we believe that SNNs can create a niche 

for sensory-data processing, including in robotics and autonomous 

control.

Lifelong learning and learning with fewer data

Deep-learning models suffer from catastrophic forgetting when they 

undergo continual learning. For instance, when a network trained on 

task A is later exposed to task B, it forgets all about task A and remem-

bers only task B. Establishing lifelong learning in a dynamically chang-

ing environment as humans do has garnered considerable attention 

from the research community. This is also a nascent direction in deep-

learning research, but we need to think whether the additional temporal 

dimension of data processing in SNNs may help us to achieve continual 

learning64. A similar direction worth exploring is one-shot learning. 

Learning with fewer data is the ultimate challenge and this is arguably 

one area where SNNs can achieve better results than deep learning. 

Unsupervised learning in SNNs can be combined with minimal super-

vision using only a fraction of the labelled training data to perform 

data-efficient training46,50,65.

Forging links with neuroscience

We can take inspiration from neuroscience and apply those abstrac-

tions to learning rules in order to come up with efficient strategies. 

For instance, Masquelier et al.65 employed STDP with temporal cod-

ing to mimic the visual-cortex pathway and found that such learn-

ing causes neurons to become feature selective—that is, different 

neurons learning different features—to different visual aspects of 

an image, resulting in a convolutional hierarchy of features. Simi-

larly, incorporating dendritic learning66 and structural plasticity67 to 

improve spike-based learning by adding dendritic connections as an 

additional hyperparameter (a user-defined design parameter), offers 

interesting possibilities. A complementary body of work in the SNN 

domain is that of liquid state machines (LSMs)68. LSMs use unstruc-

tured, randomly connected recurrent networks paired with a simple 

linear readout. Such frameworks with spiking dynamics have shown 

a surprising degree of success for a variety of sequential recognition 

tasks69–71, but implementing them for complex and large-scale tasks 

remains an open problem.

Hardware outlook

From the above description of information processing and spike-based 

communication, a few characteristics of hardware systems that aim 

to form the underlying computational framework for SNNs can easily 

be hypothesized. Among these are the sparse-event-driven nature of 

the underlying hardware as a direct manifestation of the spike-based 

information exchange; the requirement for tightly intertwined com-

puting and memory fabrics  inspired by the ubiquitous presence of 

neurons and synapses throughout the biological brain; and the need 

to implement complex dynamical functions—for example, neuronal 

and synaptic dynamics using minimal circuit primitives.

The emergence of neuromorphic computing

In the 1980s, almost four decades after the invention of the transistor,  

Carver Mead envisioned “smarter” and “more-efficient” silicon com-

puter fabrics based on certain aspects of biological neural systems72,73. 

Although he suggested that his initial attempts to build such neuro-

morphic systems were “simple and stupid”74, his work represented 

a new paradigm in hardware computing. Instead of focusing on 

Boolean computing based on basic AND and OR gates, Mead focused 

on analog distributed-computing circuits that mimicked neurons  

and synapses74. He exploited the inherent device physics of the  

metal-oxide–silicon (MOS) transistor in the subthreshold regime—

where current–voltage characteristics are exponential—to mimic  

exponential neuronal dynamics72. Such device–circuit codesign is cur-

rently one of the most intriguing areas in neuromorphic computing, 

driven by novel emerging materials and associated devices.

The advent of parallel-processing GPUs

As opposed to CPUs (central processing units) that consist of one (or 

a few) complex computing core(s) integrated with on-chip memories, 

GPUs75 consist of many simple computing cores that function in parallel, 

leading to high-throughput processing. GPUs were traditionally hard-

ware accelerators for speeding up graphics applications. Of the many 

non-graphics applications that benefited from high-throughput com-

putations of GPUs, deep learning is the most remarkable6. In fact, GPU 

servers are the go-to hardware platforms not only for running DLNs, 

but also for exploring inference and training for SNNs76,77. While GPUs 

do provide an obvious advantage via their increased programming flex-

ibility, they do not explicitly leverage the event-driven nature of spiking 

computations. In this regard, event-driven ‘Big Brain’ neuromorphic 

chips can yield the most energy-efficient solutions78,79.

The ‘Big Brain’ chips

‘Big Brain’ chips80 are distinguished by integrating millions of neurons 

and synapses that render spike-based computations78,81–86 (see Fig. 5a). 

Neurogrid82 and TrueNorth84 are two model chips based on mixed-

signal analog and digital circuits, respectively. TrueNorth uses digital 

circuits because analog circuits tend to accumulate errors easily, and 

are much more susceptible to process-induced variations in chip fabri-

cation. Neurogrid was designed to assist computational neuroscience 

in emulating brain activity, with complex neuronal mechanisms such 

as opening and closing of various ion channels and the characteristic 

behaviour of biological synapses82,87. By contrast, TrueNorth origi-

nated as a neuromorphic chip geared towards solving commercially 

important tasks such as recognition and classification using SNNs, and 

is based on simplified neural and synaptic primitives.

Taking the example of TrueNorth, two features that span different 

implementations of neuromorphic chips78,88 can be highlighted as follows. 

Asynchronous address event representation. First, asynchronous 

address event representation (AER; Fig. 5b); this differs from con-

ventional chip design, in which all computations are performed in 

parts with reference to a global clock. Because SNNs are sparse and 

computation is only required when a spike (or an event) is generated, 

asynchronous event-driven computation is much more suitable.  

In fact, enabling event-driven computations based on spikes has 

historically been one of the most attractive aspects of spike-based 

computations89,90.

Network-on-chip. Second, networks-on-chip (NOCs) are used for 

spike communication. NOCs are networks of on-chip routers that  

receive and transmit packets of digital information through a time- 

multiplexed shared bus. The use of NOCs for large-scale chips is im-

perative, because connectivity in a typical silicon fabrication process is 

largely two-dimensional, with limited flexibility in the third dimen-

sion. We note that, despite the use of NOCs, on-chip connectivity still 

cannot rival the three-dimensional connectivity found in the brain. 

TrueNorth—and subsequent large-scale digital neuromorphic chips 

like Loihi78—have demonstrated energy efficiency for SNN-based ap-

plications, taking us a step closer towards bio-fidelic implementa-

tions. However, limited connectivity, constrained bus bandwidth for 

NOCs and the all-digital approach remain key areas that require further  

investigation.

Beyond-von-Neumann computing

The sustained dimensional scaling of transistors—referred to as Moore’s 

law91—has driven the ever-increasing computing power of CPUs and 

GPUs as well as the ‘Big Brain’ chips. In recent years, this increase has 
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slowed down as silicon-based transistors approach their physical limit92. 

To keep pace with soaring demand for computing power, researchers 

have recently begun exploring a two-pronged approach to enable both 

‘beyond von Neumann’ and ‘beyond silicon’ computing models. A key 

shortcoming of the von Neumann model93 is the clear demarcation of 

a processing unit physically separated from a storage unit, connected 

through a bus for data transfer (see Fig. 1c). The frequent movement 

of data between the faster processing unit and the slower memory 

unit through this bandwidth-constrained bus leads to the well-known 

‘memory wall bottleneck’ that limits computing throughput and energy 

efficiency94.

One of the most promising approaches in mitigating the effect 

of the memory wall bottleneck is to enable ‘near-memory’ and ‘in- 

memory’ computing95,96. Near-memory computing enables co-loca-

tion of memory and computing by embedding a dedicated processing 

engine in close proximity to the memory unit. In fact, the ‘distributed 

computing architecture’ of various ‘Big Brain chips’ (refer to Fig. 5) 

with closely placed neurons and synaptic arrays are representative of 

near-memory processing. By contrast, in-memory computing embeds 

certain aspects of computational operations within the memory array 

by enabling computation in the memory bit-cells or the peripheral 

circuits (see Fig. 6 for an example).

Non-volatile technologies

Non-volatile technologies97–103 are usually compared to biological syn-

apses. In fact, they exhibit two of the most important characteristics of 

biological synapses: synaptic efficacy and synaptic plasticity. Synaptic 

plasticity is the ability to modulate the weights of the synapses based on 

a particular learning rule. Synaptic efficacy refers to the phenomenon 

of generating an output based on incoming spikes. In its simplest form, 

this means that incoming spikes are multiplied by the stored weights 

of synapses, which is usually represented as programmable, analog, 

non-volatile resistance. The multiplied signals are summed from all the 

pre-neurons (neurons in a particular layer that receive input spikes) and 

applied as the input signal to the post-neuron (neurons in a particular 

layer that generate output spikes) (see Fig. 3). Figure 6 illustrates how 

in situ synaptic efficacy and synaptic plasticity can be accomplished 

using emerging non-volatile memristive technologies, arranged in a 

crossbar fashion103,104. Additionally, such crossbars can be connected 

in an event-driven manner using NOCs to build dense, large-scale neu-

romorphic processors featuring in situ in-memory computations.

Various works based on memristive technologies105,106 such as 

resistive random-access memory (RRAM)107, phase-change memory 

(PCM)108 and spin-transfer torque magnetic random-access memory 

(STT-MRAM)109 have been explored for both in situ dot-product compu-

tations and synaptic learning based on STDP rules. RRAMs (oxide-based 

and conductive-bridge-based107) are electric-field-driven devices that 

rely on filament formation to achieve analog programmable resistance. 

RRAMs are prone to device-to-device and cycle-to-cycle variations110,111, 

which is currently the major technical roadblock. PCMs comprise a 

chalcogenide material sandwiched between two electrodes that can 

switch its internal state between amorphous (high resistance) and 

crystalline (low resistance). PCM devices have comparable program-

ming voltages and write speed to RRAMs although they suffer from 

high write-current and resistance drift over time108. Spintronic devices 

consist of two magnets separated by a spacer; they exhibit two resis-

tive states depending on whether the magnetization of the two layers 

is in the parallel or anti-parallel direction. Spin devices exhibit almost 

unlimited endurance, lower write energy and faster reversal compared 

to RRAMs and PCMs109. However, the ratio of the two extreme resistive 

states (ON and OFF) is much smaller in spin devices than in PCMs and 

RRAMs.

Another class of non-volatile devices that allows tunable non-volatile 

resistance is a floating-gate transistor; such devices are being actively 

explored for synaptic storage112–114. In fact, floating-gate devices were the 

first to be proposed as non-volatile synaptic storage115,116. Because of their 
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Fig. 5 | Some representative ‘Big Brain’ chips and AER methods. a, Among 

many works78,81–84 aimed at building large-scale neuromorphic chips, we 

highlight two representative systems—Neurogrid and TrueNorth. Neurogrid 

hosts more than 65,000 neurons and 500 million synapses, and TrueNorth has 

1 million neurons and 256 million synapses. Neurogrid and TrueNorth use tree 

and mesh routeing topology, respectively. Neurogrid uses an analog mixed-

signal design and TrueNorth relies on digital primitives. In general, digital 

neuromorphic systems such as TrueNorth represent the membrane potential 

of a neuron as an n-bit binary word. Neuronal dynamics such as LIF behaviour 

are implemented by appropriately incrementing or decrementing the n-bit 

word. By contrast, analog systems represent the membrane potential as a 

charge stored on a capacitor. Current sources feeding into and sinking through 

the capacitor node mimic the desired neuronal dynamics. Despite circuit 

differences, in general both analog and digital systems use event-driven AER 

for spike communication. Event-driven communication is one of the key 

enablers that allows integration of such large-scale systems, while 

simultaneously achieving low power dissipation. b, The basic AER 

communication system. Whenever an event (a spike) is generated on the 

transmitter side, the corresponding address is sent over the data bus to the 

receiver. The receiver decodes the incoming addresses and reconstructs the 

sequence of the spikes on the receiver side. Thus, each spike is explicitly 

encoded by its location (its address) and implicitly encoded by the time that its 

address is sent to the data bus.
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compatibility with MOS fabrication process, they are more mature than 

other emerging device technologies. However, the major limitation with 

floating-gate devices is their reduced endurance and high programming 

voltage in comparison to all other non-volatile technologies.

Although in situ computing and synaptic learning present attractive 

prospects for large-scale beyond-von-Neumann distributed comput-

ing, many challenges are yet to be overcome. Given device-to-device, 

cycle-to-cycle and process-induced variations, the approximate nature 

of computation is prone to errors that degrade overall computing 

efficiency as well as the accuracy of end applications. Further, the 

robustness of crossbar operation is affected by the presence of current 

sneak paths, line resistances, the source resistance of driving circuits 

and sensing resistance117,118. Non-idealities of the selector device (either 

a transistor or a two-terminal nonlinear device), the requirement to 

have analog–digital converters and limited bit precision also add to 

the overall complexity of designing robust computing using non-

traditional synaptic devices. Additionally, writing into non-volatile 

devices is usually energy intensive. Furthermore, the inherent stochas-

tic nature of such devices can result in unreliable write operations that 

necessitate expensive and iterative write–verify schemes119.

Silicon (in-memory) computing

Apart from non-volatile technologies, various proposals for in- 

memory computing using standard silicon memories including static 

and dynamic random-access memories are under extensive investiga-

tion. Most of these works are focused on embedding Boolean bit-wise 

vector computations inside the memory arrays120–122. Additionally, 

mixed-signal analog in-memory computing operations and binary  

convolutions have recently been demonstrated123,124. In fact, in-memory 

computing in various forms is currently being explored for almost 

all the major memory technologies, including static125 and dynamic 

silicon memories126, RRAMs127, PCMs128 and STT-MRAMs129. Although 

most of these works have focused on generic computing applications 

like encryption and DLNs, they can easily find application in SNNs.

Algorithm–hardware codesign
Mixed-signal analog computing

Analog computing is highly susceptible to process-induced varia-

tions and noise, and is largely limited both in terms of area and energy 

consumption by the complexity and precision of analog and digital 

converters. Employing on-chip learning with tightly coupled analog 

computing frameworks will enable such systems to intrinsically adapt 

to process-induced variations, thereby mitigating their effect on accu-

racy. Localized learning with an emphasis on on-chip and on-device 

learning solutions has been investigated in the past130,131 and also in 

more recent bio-plausible algorithmic works54. In essence, whether 

in the form of localized learning or in the use of paradigms like den-

dritic learning, we are of the opinion that a class of better error-resilient 

localized-learning algorithms—even at the cost of additional learning 

parameters—will be key in moving forward with analog neuromorphic 

computing. Additionally, the resilience of on-chip learning can be used 

to develop low-cost approximate analog–digital converters, without 

reducing the accuracy of a targeted application.

Memristive dot products

As a specific example of analog computing, memristive dot products 

are a promising approach towards enabling in situ neuromorphic 
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Fig. 6 | The use of non-volatile memory devices as synaptic storage. 

 a, Schematics of various non-volatile technologies: PCM, RRAM, STT-MRAM 

and floating-gate transistor. Such non-volatile devices have been used as 

synaptic storage and for in situ neuro–synaptic computations56,112–114,135,139–144, 

and as in-memory accelerators for a wide range of generic non-neuromorphic 

applications128,145–149. b, The implementation of synaptic efficacy and plasticity 

using memristive technologies. We show an array of memristors connected in 

a crossbar fashion. An incoming spike on the horizontal lines (green) results in 

a current that is proportional to the conductance of the memristive element in 

accordance with Ohm’s law. Currents through multiple spiking pre-neurons are 

summed along vertical lines (black), a consequence of Kirchoff’s current law. 

This results in the in-memory dot-product operation that represents synaptic 

efficacy. Synaptic plasticity is generally implemented in situ by appropriately 

applying a voltage pulse whenever the pre- and post-neurons spike on the 

horizontal and vertical lines, respectively, in accordance with a specific 

learning rule (as in STDP). The resistance values of the constituent memristors 

are programmed on the basis of the resulting voltage difference across the 

respective horizontal and vertical lines. The shape and timing of the voltage 

pulses to be applied for programming are chosen depending on the specific 

device technology. Note that floating-gate transistors, because they are three-

terminal devices, require additional horizontal and/or vertical lines to enable 

crossbar functionality115. The figure also shows memristive arrays connected in 

a tiled fashion with NOCs that enable high-throughput in situ computations97.



Nature | Vol 575 | 28 November 2019 | 615

computing. Unfortunately, the resulting currents in memristive arrays 

representing the dot products have both spatial and data dependence, 

making crossbar circuit analysis a non-trivial, complex problem. Few 

works have studied the effect of crossbar non-idealities117,132,133 and 

explored training approaches to mitigate the effect of dot-product 

inaccuracies118,134. Note that most of these works are focused on DLNs 

as opposed to SNNs. However, it is reasonable to assume that the basic 

device and circuit insights developed in these works are relevant for 

SNN implementations as well. Existing works require detailed device–

circuit simulation runs that must be tightly coupled with training algo-

rithms to diminish the accuracy loss. We believe an abstracted version 

of crossbar array models based on state-of-the-art devices, along with 

efforts to establish theoretical bounds in dot-product inaccuracies, 

are of immediate interest. This will enable an algorithm designer to 

explore new training algorithms while accounting for the hardware 

inconsistencies without time-consuming and iterative device–circuit–

algorithm simulations.

Stochasticity

Stochastic SNNs are of substantial interest owing to the availability 

of emerging devices that are inherently stochastic135,136. Most of the 

recent works on the implementation of stochastic binary SNNs have 

focused on small-scale tasks such as MNIST digit recognition56. The 

common theme across such works is using stochastic STDP-like local 

learning rules to generate weight updates. We think that the temporal 

dimension in STDP learning provides additional bandwidth for weight 

updates to head in the right direction (towards achieving overall accu-

racy), even when constrained to the binary regime. The combination 

of such binary local-learning schemes with gradient-descent-based 

learning rules for large-scale tasks, while leveraging the stochasticity 

in hardware, provides interesting opportunities for energy-efficient 

neuromorphic systems.

Hybrid design approaches

We believe that hardware solutions based on hybrid approaches—that 

is, combining the advantages of various techniques on a single plat-

form—is another important area that requires intensive investigation. 

Such approaches can be found in recent literature137, where low-preci-

sion memristors are used in combination with a high-precision digital  

processor. There are many possible variants of such hybrid approaches, 

including significance-driven segregation of computational data, 

mixed-precision computations137, reconfiguring conventional sili-

con memories as on-demand in-memory approximate accelerators125, 

locally synchronous and globally asynchronous designs138, locally 

analog and globally digital systems; wherein both emerging and silicon-

based technologies can be used in unison to achieve improved accuracy 

and energy efficiency. Furthermore, such hybrid hardware can be used 

in tandem with hybrid spike-based learning approaches, such as locally 

unsupervised learning followed by globally supervised backpropaga-

tion53. We believe that such combined local–global learning schemes 

can be leveraged to reduce hardware complexity, while also minimizing 

performance degradation for end applications.

Conclusion

Today, enabling ‘intelligence’ in almost all of the technology around us 

has become a central theme of research spanning various disciplines. 

In that regard, this Perspective sets out the case for neuromorphic 

computing as an energy-efficient way to enable machine intelligence 

through synergistic advancements in both hardware (computing) 

and algorithms (intelligence). We began by discussing the algorith-

mic implications of using a spiking neural paradigm, which uses 

event-driven computations, in contrast to real-valued computing in 

conventional deep-learning paradigms. We have described the advan-

tages and limitations for realizing learning rules (such as spike-based 

gradient-descent learning, unsupervised STDP and related conversion 

approaches from deep learning to the spiking domain) for standard 

classification tasks. Future algorithmic research should exploit the 

sparse and temporal dynamics of spike-based information processing, 

together with complementary neuromorphic datasets that can result 

in real-time recognition; and hardware development should focus on 

event-driven computations, co-location of memory and computational 

units, and mimicking dynamical  neuro-synapse functionality. Of spe-

cial interest are emerging non-volatile technologies enabling in situ 

mixed-signal analog computing. We have also discussed prospects 

for cross-layer optimization that enables algorithm–hardware code-

sign—for example, exploiting algorithmic resilience (as in local learn-

ing) and hardware feasibility (as in ease of implementing stochastic 

primitives).  Finally,the promise of spike-based energy-efficient and 

intelligent systems built with traditional and emerging devices is in 

sync with the current interest in enabling ubiquitous intelligence. Now 

is the time for the interchange of ideas, with multidisciplinary efforts 

spanning devices, circuits, architecture and algorithms to synthesize 

a truly energy-efficient and intelligent machine.
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