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The Personality of Portia

Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928;
Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason
for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably
on the head of a pin, a spider brain seems to vanish into insignificance. Common
sense tells us that compared with large-brained mammals, spiders have so little to work
with that they must be restricted to a circumscribed set of rigid behaviors, flexibility
being a luxury afforded only to those with much larger central nervous systems.

In this chapter we review recent findings on an unusual group of spiders that seem
to be arachnid enigmas. In a number of ways the behavior of the araneophagic
jumping spiders is more comparable to that of birds and mammals than conventional
wisdom would lead us to expect of an arthropod.

The term araneophagic refers to these spiders’ preference for other spiders as prey,
and jumping spider is the common English name for members of the family Saltici-
dae. Although both their common and the scientific Latin names acknowledge their
jumping behavior, it is really their unique, complex eyes that set this family of spiders
apart from all others. Among spiders (many of which have very poor vision), salticids
have eyes that are by far the most specialized for resolving fine spatial detail. We focus
here on the most extensively studied genus, Portia.

Before we discuss the interrelationship between the salticids’ uniquely acute
vision, their predatory strategies, and their apparent cognitive abilities, we need to
offer some sense of what kind of animal a jumping spider is; to do this, we attempt
to offer some insight into what we might call Portia’s personality. We are able to offer
such a perspective because we have been immersed in the natural history of this
animal over the course of many years of research. We will try to share our perspective
by offering three “stories” from the life of Portia.

Portia is a genus containing about twenty species of primarily tropical salticids
that are restricted to Africa, Asia, and Australasia (Wanless, 1978). Rain forest is the
typical habitat for most of these species, and our stories take place in the rain forest
of northeast Queensland, Australia. Portia’s microhabitat within the forest is unusual.
Salticids are traditionally envisaged as hunters who have little use for webs (Richman
and Jackson, 1992). However, Portia frequents webs, both self-built and those of other
species (Jackson and Blest, 1982a). Portia is also unusual in its appearance, both when
quiescent and especially when walking.

When seen out of context, for instance on a laboratory table, Portia’s walking gait
appears overacted, even comical. With its eight legs waving about in a slow, jerky
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manner, Portia is reminiscent of a robot in a 1950s science fiction movie. Under natural
circumstances, however, its gait makes sense. Portia is a convincing mimic of the detri-
tus found on the forest floor and in webs. Its body is covered with a fine, low-
contrast patchwork of browns, softened by fringes of hair. When walking, its exag-
gerated, hesitating stepping motion preserves its concealment. It appears to be no
more than a piece of detritus flickering as dapples of sunlight filter through the canopy
(figure 1.1A).

Stalking a Jumping Spider

Our first story begins with Portia slowly walking down the trunk of a tree, perhaps
looking for the webs of potential prey. As do all salticids, Portia trails a line of silk,
called a dragline, behind it as it walks (Richman and Jackson, 1992).

Many animals frequent tree trunks in the forest and before long Portia steps onto
the draglines of another salticid. In this case they are the draglines of Jacksonoides
queenslandicus (figure 1.1B), the most abundant salticid in the Queensland rain forest
(Jackson, 1988), and among Portia’s favorite prey (Clark and Jackson, 2000).

Portia is sensitive to the chemical and odor cues from the other spider’s drag-
lines (Jackson et al., 2002). These cues prime Portia to expect to find J. queenslandicus
in the vicinity, and the priming actually makes Portia more effective at visually locat-
ing the prey. When quiescent on a tree trunk, however, J. queenslandicus’s markings
make it hard to see, and this time its camouflage is too good. However, Portia has a
solution, something called “hunting by speculation” (Clark et al., 2001; see Curio,
1976).

Portia makes a sudden leap straight up into the air. . queenslandicus, resting quietly
some 15cm away, turns to look at what moved, but Portia is already back on the
ground, sitting still. . queenslandicus does not see Portia, but Portia detected J. queens-
landicus as it turned. Very slowly, Portia orients toward J. queenslandicus and, once
J. queenslandicus turns away, Portia begins to stalk it.

When stalking other kinds of spiders, Portia moves slowly, with its palps hanging
loosely in front of its face. When stalking a salticid, however, Portia moves even more
slowly, exaggerating its choppy, robotlike gait, and pulls its palps back so they are
hidden from the prey’s view (Jackson and Blest, 1982a; Harland and Jackson, 2001).

Being a salticid, J. queenslandicus can see well, and this time it detects a flicker of
movement as Portia comes up from behind, and it turns toward Portia. Portia freezes
the instant its prey’s large eyes come into view (Harland and Jackson, 2000a). J. queens-
landicus looks straight at Portia, but sees nothing to indicate danger. Eventually J.
queenslandicus turns and walks away. With J. queenslandicus’s eyes no longer in sight,
Portia resumes its slow advance.

Portia draws steadily closer to its prey, continuously maneuvering to stay behind
the J. queenslandicus. Eventually, from a few millimeters away, Portia lunges, and its
fangs pierce the integument just above the brain of the J. queenslandicus. The victim
is soon paralyzed; Portia feeds, and our first story comes to an end.
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Figure 1.1

(A) Portia fimbriata subadult male from Queensland, Australia, and (B) primary salticid
prey of the Queensland Portia, the insectivorous Jacksonoides queenslandicus. (Photo of P.
fimbriata by D. Harland; photo of ]. queenslandicus by R. R. Jackson.)
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Deceiving an Orb Weaver

Portia sits near the edge of an orb web, looking across the sticky spirals toward the
web’s architect, Gasteracantha sp., sitting at the hub. Gasteracantha is a distinctive
spider. It is large, powerful, and has long horny spines on its abdomen that make it
difficult for Portia to hold on to.

Gasteracantha’s eyesight is too poor to recognize Portia as a predator. However,
Gasteracantha has an acute ability to detect and interpret web signals—displacements,
even very small displacements, of its web’s silk lines (Witt, 1975). Portia’s task is to get
within attacking distance without eliciting the wrong response from Gasteracantha.
This large spider is fully capable of preying on Portia should it get the upper hand.
Just walking across the web will not work for Portia. The resulting web signals will give
it away.

So Portia moves slowly onto the edge of the web, reaches out with its forelegs,
and begins to pluck on the silk; but Gasteracantha does not move. Portia continues to
make signals, but varies them. It plucks with different legs, plucks with its palps, varies
the speed and the amplitude at which its appendages move, and it shakes the web by
vibrating its abdomen up and down. Complex patterns are made by simultaneously
moving different sets of appendages, with different appendages moving in different
ways. By using any combination of its eight legs, two palps, and abdomen, Portia is
capable of generating an almost unlimited repertoire of web signals.

Eventually a signal may cause a reaction in Gasteracantha, and it may approach
Portia. If the approach is not too fast, Portia will continue to signal, slowly drawing
the prey spider closer (Jackson and Wilcox, 1993a). Portia avoids making web signals
that elicit a fast approach because, when moving quickly, Gasteracantha is dangerous
and more likely to become predator than prey.

Luring Gasteracantha is a slow process, and close to an hour has already passed.
Then something happens to speed things up. A light tropical breeze gently rocks the
web. The wind-induced web movements mask any fainter movements caused by Portia
and the spider takes advantage of the smoke screen (Wilcox et al., 1996) by stepping
rapidly across the web toward Gasteracantha. This time, however, when the breeze dies
down, Portia is still several centimeters from its prey.

Now Portia creates a smoke screen of its own (Tarsitano et al., 2000). By violently
and repeatedly flexing all of its legs at the same time, the spider shakes the web
much as the breeze did. Cloaked by a succession of such diversions, Portia closes the
remaining distance. However, when it is about 3mm from Gasteracantha, some-
thing goes amiss. Gasteracantha suddenly turns on Portia, lunging forward and grab-
bing one of Portia’s legs with its chelicerae. Portia leaps off the web, leaving the leg
behind.

After landing on the forest floor half a meter below, Portia looks up at the web
and then climbs back to it. Once there, it repeats the entire process and this time suc-
ceeds in lunging at Gasteracantha. Portia quickly punctures Gasteracantha’s cuticle with
its fangs and then lets go. Gasteracantha runs to the edge of the web and drops to the
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ground in an attempt to escape, but paralysis soon sets in. Portia drops to the ground
on a dragline, walks in the direction of Gasteracantha, and scans the forest floor for
the specific kind of spider it just attacked (R. R. Jackson, unpublished results). Portia
will bypass other potential prey placed in its path, continuing to search for the
expected prey, in this case, Gasteracantha.

Plotting a Detour

Portia walks across the forest floor until its attention is drawn to the distinctive cross-
shaped stablimenta adorning the orb web of Argiope appensa about a meter away (Seah
and Li, 2001). Portia moves so that the web is in clear view and approaches the tree
to which it is attached. However, the web soon is out of view because of the uneven
clutter on the forest floor. The journey to the tree is anything but direct. Portia has to
continuously change direction along a route that twists around leaves, tree roots, and
lumps of dirt. Intermittent visual feedback from the tree and occasionally from the
web, combined with an internal sense of direction (see D. E. Hill, 1979), keeps Portia
on course.

Portia begins climbing the tree toward Argiope’s web, but Argiope is no ordinary
spider. When it detects an intruder on its web, it rocks up and down, shaking the web
violently (Jackson et al., 1993). So moving directly onto this spider’s web is problem-
atical. One misstep and Argiope may shake Portia off of the web.

Portia stops just short of the web and slowly looks around. Eventually its line
of gaze traces a path (Tarsitano and Andrew, 1999) from the top of the web to a
nearby vine and down the vine and into a mass of tangled vegetation adjacent to
the tree trunk. Portia then turns and walks away, but it is not giving up. Instead, the
spider takes a long, convoluted detour, during the course of which it will tempor-
arily lose sight of the web. After about 20min, Portia arrives on the vine it saw above
the web. Sitting on a leaf connected to the vine, Portia looks down at the resting
Argiope and lowers itself on a dragline alongside the web without touching it. When
it is level with Argiope, Portia swings in and grabs the unsuspecting prey (see Jackson,
1992a).

The Flexibility of Portia’s Behavior

Our three stories illustrate a number of examples of behavior which, had they been
described in a vertebrate predator, would probably be discussed in the context of
animal cognition, animal intelligence, or problem solving. In each of the three
cases, the behaviors appear to have a high level of flexibility (or plasticity) for a
spider.

Within each story, Portia displayed a number of sophisticated behaviors. We focus
on three examples, each of which provides some insight into the remarkable sensory
capacities of this spider. The behaviors are trial-and-error signal derivation, detouring,
and selective attention.
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Trial and Error

Although Portia is called a specialist because it prefers and is efficient at capturing
spiders, the name can be somewhat misleading. That is, Portia is actually a generalist
on spiders. And, if one considers the variation just in web-building spiders (Jackson
and Hallas, 1986a,b), it becomes clear why Portia’s behavior needs to be so flexible.

Web-building spiders have only rudimentary eyesight (M. F. Land, 1985a), and so
use the information provided by web signals as a primary source of sensory informa-
tion (Masters et al., 1986; Foelix, 1996). Hence the web itself can be thought of as an
integral part of a typical web-builder’s sensory system (Witt, 1975).

After entering another spider’s web, Portia does not approach its victim straight-
away. Instead, in an attempt to gain control over its victim’s behavior, Portia displays
a number of aggressive mimicry signals (Jackson and Wilcox, 1998) that the web spider
can sense. In the case of its more commonly encountered prey, Portia uses specific,
inflexible, preprogrammed signals, as one might expect an arthropod predator to do.
However, as noted earlier, Portia can also create an almost limitless repertoire of web
signals by varying the activity of its legs, palps, and abdomen (Jackson and Blest,
1982a; Jackson and Hallas, 1986a). This allows the spider to adjust its web signals in
response to feedback from the intended victim (Jackson and Wilcox, 1993a; Jackson
and Carter, 2001).

When hunting commonly encountered prey, Portia often uses trial-and-error
learning to complete a predatory sequence begun with preprogrammed signals
(Jackson and Wilcox, 1998). It begins a trial-and-error sequence by presenting the
intended prey with a variety of different signals. When a signal elicits an appropriate
response, Portia stops varying its signals and repeats the successful sequence. If the
prey spider stops responding appropriately, Portia again generates a variety of signals
until one triggers a favorable response from the web’s resident, and so on. This appears
to be an example of flexible problem solving and represents a rudimentary cognitive
ability (see Terrace, 1985; Toates, 1988, 1996).

Altering its web signals through trial-and-error learning enables Portia to prey
effectively on a wide range of web-building spiders. In the laboratory, this includes
species that Portia has never encountered in nature and would never have encoun-
tered in its evolutionary history.

The convergence of behavioral ecology and cognitive psychology has generated
considerable interest in how the cognitive capacities of animals influence their behav-
ior (Yoerg, 1991; Belisle and Cresswell, 1997; Dukas, 1998; Kamil, 1998). When exam-
ining this relationship, one key consideration must be the extent to which an animal’s
cognitive abilities are merely single-purpose adaptations tailored for specific functions
rather than broader cognitive capacities (Stephens, 1991; McFarland and Boser, 1993).
We are only beginning to understand how often and under what circumstances the
evolution of cognitive skills has pushed animals across a threshold, so to speak,
enabling them to respond flexibly and adaptively to problems outside of the context
in which these skills originally evolved (see Dennett, 1996).
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Figure 1.2

Apparatus that was used for ascertaining whether Portia fimbriata uses trial and error to
solve a confinement problem. The spider is put on a block (island) surrounded by a frame
(atoll) in a water-filled tray. It must choose to either leap or swim to reach the atoll and
then again choose how it should reach the tray’s edge. The successful choice was prede-
termined randomly. If it was successful, the spider was moved to the atoll; if unsuccessful,
it was returned to the island. (Adapted from Jackson et al., 2002.)

Portia may be at this threshold. For instance, we tested Portia in a situation in
which it had to discover a method of escape through trial and error (Jackson et al.,
2001). In the experiments, Portia was confined to an artificial island surrounded by
water (figure 1.2). This particular problem was chosen because it is unlikely to be
similar to anything this spider is likely to encounter in the wild. Portia was forced to
choose between two potential escape tactics (leap or swim), one of which would fail
(it would bring the spider no closer to the edge of the tray) and the other of which
would result in partial success (it would bring the spider closer to the edge of the tray).
Portia consistently repeated choices that brought partial success and avoided choices
that brought failure.

Detouring

Although detouring has been most extensively studied in vertebrates (O. von Frisch,
1962; Curio, 1976; Collett, 1982; Chapuis, 1987; Rashotte, 1987; Regolin et al., 1994,
1995a,b), more than 67 years ago Heil (1936) suggested that salticids can make delib-
erate detours. This was subsequently confirmed experimentally by D. E. Hill (1979)
using a North American species of Phidippus. The detours required in Heil’s and Hill’s
experiments were simple and short, and Hill (1979) concluded that detouring required
no insight because, in the absence of a straight path to the prey, all the salticid did
was to head toward an object (“secondary goal”) that would bring it closer to the prey
(the “primary goal”), and it continued doing this until the prey was reached. Hill’s
(1979) conclusion, however, does not appear to apply to Portia.
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Portia reaches its prey by taking indirect routes (detours) when direct routes are
unavailable (Tarsitano and Jackson, 1992; Tarsitano and Andrew, 1999), including
detours that can be completed only by initially moving away from, and losing sight
of, the prey (reverse-route detours) (Tarsitano and Jackson, 1994, 1997). In encoun-
ters with certain types of prey, such as spitting spiders, which are particularly
dangerous (D. Li et al., 1999), Portia takes detours even when shorter, direct routes are
available (Jackson and Wilcox, 1993b; Jackson et al., 1998). Solving path-finding prob-
lems by selecting a route ahead of time (Tarsitano and Jackson, 1997) implies plan-
ning ahead (i.e., a type of offline processing; see Toates, 1996), a putative cognitive
ability when it is manifested by vertebrates.

Selective Attention
Chemical cues from J. queenslandicus have been shown experimentally to facilitate the
speed with which P. fimbriata attend to visual cues from J. queenslandicus. These find-
ings appear to be an example of attentional priming (see Roitblat, 1987). This is note-
worthy in that chemosensory stimuli are priming responses to visual stimuli and
because this appears to be an instance in which the priming mechanism appears to
be preprogrammed.

Attentional priming, in conjunction with Portia’s apparent use of search images
(as noted earlier; L. Tinbergen, 1960; Bond, 1983; Langley et al., 1996), suggests that
this spider can access a mental representation of an unseen but expected prey item.
However, what “representation” might mean for Portia is unclear (see Roitblat, 1982;
Epstein, 1982). In perhaps the simplest case, attentional priming might be explained
by a direct chemosensory-induced increase in the sensitivity of a single hypothetical
feature-detecting neuron in Portia’s visual system. Further research on the mechanisms
behind Portia’s visual perception is needed.

Integrating Tactics
During much of the twentieth century, the prevailing assumption was that arthropod
behavior is rigid, and researchers often expressed surprise at how varied a salticid’s
responses could be. For instance, Homann (1928) noted that individual spiders with
the same eye experimentally occluded occasionally acted differently from one another.
Crane (1949) tried to account for her spiders’ behavioral variability by hypothesizing
the existence of “epigamic rhythms” and short-term cyclical fluctuations of internal
state. In a series of careful experiments on color discrimination, Késtner (1950) tested
the salticid, Evarcha fulcata (Clerck), and found it preferred a striped over a uniformly
colored target of identical brightness. However, during retests, many spiders switched
preferences (despite the fact that neither target offered a reward or escape option).
This behavior was so unexpected that Kéastner admitted simply that it was impossible
for him to explain these facts.

Variability is a dominant theme in Portia’s behavior, seeming to highlight the flex-
ibility of its prey-capture strategy. During predatory encounters, Portia rarely relies
exclusively on any one tactic. Instead, it switches between or combines tactics, often
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appearing to derive a unique solution for how to capture a particular prey spider under
a particular set of circumstances.

The Evolution of Behavioral Flexibility in Portia
Theoretical accounts of the evolution of Portia’s problem-solving ability have empha-
sized the close relationship between this spider’s behavior and its prey’s sensory systems,
the high level of risk involved in attempting to gain control over another predator’s
behavior, and the potential for co-evolution between predator and prey (Jackson, 1992a).
Limits of scale must place a ceiling on how flexible an animal’s behavior can
become, but how and where size constraints become important remain unresolved
questions. Smaller animals tend to have fewer, not smaller, neurons (Alloway, 1972;
Menzel et al., 1984), which means fewer components are available for brains, sensory
organs, problem-solving mechanisms, and cognitive and behavioral flexibility. There
is considerable evidence that even over a small size range and among closely related
species, brain size influences cognitive capacities (Lashley, 1949; Rensch, 1956; Jerison,
1973, 1985; Eisenberg and Wilson, 1978; Clutton-Brock and Harvey, 1980; Mace et al.,
1981; Lefebre et al., 1997). Hence, small brain size seems to present a fundamental
engineering problem that potentially limits how complex or flexible an arthropod’s
behavior can become (Harland and Jackson, 2000b). On the other hand, Portia’s behav-
ior suggests that the chasm between small-brained and large-brained animals may not
be quite as enormous as has been conventionally thought (see Bitterman, 1986). The
key to understanding Portia’s remarkable behavior may lie in its unusually complex
sensory systems, especially its vision.

Salticid Sensory Systems

Nonvisual Senses

Vision has been considered to be essential to the behavior of salticids (Drees, 1952;
M. E Land, 1969a,b). Hence, research on salticid sensory systems has focused almost
exclusively on their unique eyes. Thus what is known about their other sensory capac-
ities is limited. However, behavioral observations indicate that salticids may rely
heavily on modalities other than vision. For instance, when they are in complete dark-
ness, some salticids readily use substrate-borne vibratory signals during mating (Taylor
and Jackson, 1999). Most salticids can capture prey in total darkness (Taylor et al.,
1998), and Portia can invade webs and use web signals in the dark (R. R. Jackson and
D. P. Harland, unpublished results).

Chemoreception is also important to Portia (Peckham and Peckham, 1887; Heil,
1936); pheromones left by conspecifics influence courtship (Pollard et al., 1987). Fur-
thermore, Portia can discriminate between itself and conspecifics, identify conspecifics
as familiar, and determine the sex of conspecifics based on chemical cues imbedded
in their silk (Willey and Jackson, 1993; R. J. Clark and Jackson, 1994a,b, 1995a,b). Air-
and substrate-borne chemical cues are also used to detect commonly encountered prey
(Jackson et al., 2002).
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Figure 1.3

Drawing of Portia fimbriata showing the external arrangement of salticid eyes. The princi-
pal (AM) eyes function in high-acuity and color vision. The secondary eyes (PL, PM, AL)
function in motion detection.

Although detailed studies of salticid mechanical senses are lacking, this modal-
ity is well described for other spider families (see Foelix, 1996). In other spiders, vari-
ous mechanosensors (primarily in the form of sensory hairs and slits in the
integument) mediate detection of air movement (Barth et al., 1993), deformation of
the exoskeleton (Barth, 1985), temperature and humidity (Ehn and Tichy, 1994), and
position of the appendages relative to the body (Seyfarth, 1985). It can be presumed
that these sensory structures are also present in salticids, but more research is clearly
needed.

Vision

In contrast to an insect’s pair of multifaceted, compound eyes, salticids have eight
camera-type eyes spaced around the cephalothorax (i.e., the frontmost segment of the
body) (M. E. Land, 1985a). Acting together, these eyes (figure 1.3) serve much the same
role as do the two eyes of a predatory mammal such as a lion. As in mammals, when
small-field movement is detected, Portia will orient toward it. Once located, the object
may be visually tracked, and its identity, size, range, orientation and behavior assessed
(M. E. Land, 1974). However, there are important differences in how mammalian and
salticid eyes perform these tasks.

In salticids there are two types of eyes, secondary and primary, or principal, eyes.
The six secondary eyes, spaced along the sides of the carapace, detect movement in
the periphery and enable the spider to orient toward its source. Hence the secondary
eyes are functionally analogous to the peripheral retina in vertebrates. The salticid’s
two principal, forward-facing eyes are larger than its secondary eyes and provide
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detailed information about the objects toward which the spider is oriented (e.g., the
object’s shape, texture, and color). This is functionally similar to the mammalian
fovea; that is, spatial acuity (the ability to resolve detail) is especially good in the
mammalian fovea and, in the salticid, in the central region of the retina of the
principal eye.

This division of functions (detection of peripheral movement and assessment of
detail) into two types of eyes appears to be an evolutionary response to the limita-
tions of size. For example, transposing the equivalent of a spherical vertebrate eye into
a salticid’s body would not be a workable option because an eye’s optical performance
is critically tied to the ratio between the diameter of the lens (aperture) and its ability
to magnify (focal length) (M. F. Land, 1974, 1981; Land and Nilsson, 2002). The degree
of magnification provided by a lens determines how far behind the lens an image will
form, and increasing the magnification means increasing the distance between the
lens and an image. If we were to design a spherical eye with a corneal lens, and an
aperture and magnifying power (focal length) equal to that of the salticid’s principal
eye, it would have a diameter equal to the length of one of the salticid’s principal eyes.
The additional volume of the eye (approximately 27 times more) would mean that
the single spherical, mammalian-type eye would entirely fill the salticid’s cephalotho-
rax (figure 1.4). The salticid’s solution to this size-constraint problem has been to
divide visual tasks between two types of eyes.

In terms of simple visual resolution, Portia has no rival among insects (figure 1.5).
For instance, the dragonfly, Sympetrum striolatus, has the highest known acuity among
insects (i.e., a resolving power of 0.4deg) (Labhart and Nielsson, 1995; M. F. Land,
1997). In contrast, the acuity of Portia’s principal eyes is 0.04deg, exceeding that of
the dragonfly by tenfold despite the fact that dragonfly compound eyes are about the
size of Portia’s entire cephalothorax (D. S. Williams and McIntyre, 1980)! It is inter-
esting that the human eye, with an acuity of 0.007 deg, is only five times better than
Portia’s (e.g., M. F. Land, 1981; M. F. Land and Nilsson, 2002).

The Secondary Eyes

The salticid’s six secondary eyes are smaller than the two principal eyes (figures 1.3
and 1.4A), but each secondary eye covers a much wider field of view than the prin-
cipal eyes (figure 1.6). The posterior median (PM) eyes of most salticids are regarded
as vestigial because they have degenerated retinas incapable of detecting move-
ment (Eakin and Brandenburger, 1971; M. E. Land, 1985a) (figure 1.6A). Degenerated
PM eyes are thought to be a derived condition (Wanless, 1984). For instance, a num-
ber of genera in the “primitive” salticid subfamilies Lyssomaninae and Spartaeinae
have large functioning PM eyes. (Portia, for example, is a spartaeine genus with func-
tional PM eyes; figures 1.4A and 6B). In species with degenerated PM eyes, the fields
of view of the remaining secondary eyes have apparently widened (figure 6A) so
that they encompass the fields that would be covered by functional PM eyes (M. F.
Land, 1985b).
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Figure 1.4

Drawing of Portia fimbriata showing internal arrangement of salticid eyes. (A) Cutaway
carapace showing long eye tube of the large, forward facing principal anterior median (AM)
eye and compact eye cups of secondary anterior lateral (AL) posterior median (PM), and
posterior lateral (PL) eyes (see figure 1.3). Structural tissue (e.g., eye tubes) is shown in gray,
retinae in red, and muscles in blue (only the principal eye has muscles). (B) A mammalian-
type spherical eye (at the same scale and the same viewing angle as in (4) that would be
needed to incorporate the four salticid eyes into a single eye. To retain a focal length equiv-
alent to that of an anterior median eye, the spherical eye’s diameter would have to be the
same as the length of the anterior median eye tube. Additional space would be required
for muscles (not shown). P. fimbriata’s cephalothorax would be filled with a single eye of
these dimensions.

Internally, each secondary eye has a regular mosaic of well-separated receptors
that form a bowl-like retina. The retina is made up primarily of three cell types: sensory
cells, nonpigmented supportive cells, and pigmented supportive cells (Eakin and
Brandenburger, 1971). Rhodopsins, embedded in the plasma membranes of sensory
cells, detect light. Membranes containing the rhodopsin are highly folded and situ-
ated in arrays of slender microvilli (rhabdomeres) held perpendicular to the surface of
the retina and the path of incoming light. The section of the sensory cell containing
the rhabdomeres is called a rhabdom. Each receptor (an independent functional unit
of reception) in the secondary eye is made up of two contiguous rhabdoms surrounded
by accessory cells (Blest, 1985a).

The focal lengths for secondary eyes are small compared with the principal eyes,
but small focal lengths help provide the secondary eyes with wide fields of view and
large depths of field (i.e., there is a large distance over which an image remains in
focus).

The role of the secondary eyes as motion detectors is clearly suggested by
the heavily pigmented accessory cells between the receptors, which protect and
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Figure 1.5

The spatial acuity of Portia’s eyes compared with that of other animals. The log of spatial
acuity (expressed as aminimum interreceptor angle) is plotted against the log of body
height. Data from Kirschfeld (1976), M. F. Land (1985a, 1997), and A. W. Snyder and Miller
(1978). (Adapted from Kirschfeld, 1976.)
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Plexippns

Figure 1.6

Fields of view of the eyes of (4) Plexippus sp., an advanced salticid (subfamily Salticinae)
with vestigial posterior median eyes, and of (B) Portia fimbriata, a spartaeine (primitive sub-
family) salticid that has large functional positerior median eyes. Overlapping visual fields
indicate binocular visual fields. The orthographic view is taken from 30deg longitude and
15deg latitude. AM, anterior median; AL, anterior lateral; PM, posterior median; and PL,
posterior lateral eye. (Adapted from M. F. Land, 1985b.)

help to isolate them optically (i.e., from the effects of stray photons) (Eakin and
Brandenburger, 1971; Blest, 1985a). Furthermore, compared with receptors in the
principal eyes, those of the secondary eyes tend to be larger, surrounded by sup-
portive cells (Blest, 1983), and widely spaced.

Interreceptor spacing and receptor width are critical factors defining thedegree
of an eye’s spatial acuity. As an image falls on the retina, it is sampled by the recep-
tors, each receptor sampling a specific small area. Put simply, the denser the array
of visual sampling units, the higher thedegree of spatial detail that can be resolved.
Gaps between receptors (as seen in the secondary eyes) also influence acuity by cor-
responding to gaps in the sampling space. An eye’s spatial acuity, expressed as “visual
angle” (defined as thedegrees apart objects in a scene must be before they are seen
as separate), is calculated from the image’s quality and spread, which are determined
by the aperture and focal length of the lens, plus interreceptor spacing. With visual
angles varying between 0.4 and 2deg, the spatial acuity of salticid secondary eyes
tends to be comparable to that of the compound eyes of insects (M. F. Land, 1985a,
1997).

Salticids detect movement when sequential changes in image intensity stimulate
adjacent receptors in the secondary eyes (M. E Land, 1971). A stimulus change
between just two adjacent receptors is enough to elicit an orientation response. For
example, a small spider walking along the ground to the side of Portia might project
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an image on the posterior lateral (PL) retina that covers a single receptor. As the spider
moves, its image will move from one receptor to the next on the PL retina, alerting
Portia to the presence of a moving object.

The readiness with which a single receptor in the secondary eyes can detect an
object is influenced by the size of the object’s retinal image, which is a product of the
object’s absolute size and distance (the nearer the object, the larger its retinal image).
For example, Land (1971) found that individual receptors from the PL eyes of
Metaphidippus aeneolus, with receptive fields of 1deg, responded to objects with retinal
images wider than 0.4deg (i.e., just less than half a receptor might be covered by the
image). The probability of a response increased with the width and height of the stim-
ulus, leveling out for stimuli larger than ~1.1deg.

The salticid secondary eyes are monochromatic; they contain just one type of
rhodopsin, with a maximum sensitivity at 535nm (our green) (Yamashita and Tateda,
1976; Hardie and Duelli, 1978). In practical terms, this means that a salticid can detect
movement of an object when there is a strong contrast in green: either a green object
against a background of other colors or an object that is not green moving against a
green background. For example, a green dot moving on a black background (or vice
versa) provides a high level of contrast and is easily seen by a salticid. However, a red
dot moving on a black background is unlikely to be detected.

When movement is detected, a salticid may orient toward the object, bringing it
into its principal eyes’ field of vision. Information from the secondary eyes governs
orienting, which appears to depend on translating the position of stimulation on one
of the secondary eye retinas into a particular number of steps by the legs, with legs
on opposite sides of the body moving in opposite directions, which turns the spider
a specific number ofdegrees to the left or right (M. F. Land, 1972).

When discussing algorithms that control orientation by animals, a distinction is
commonly made between closed- and open-loop turns (Mittelstaedt, 1962; M. F. Land,
1971). Closed-loop turns require that the animal receive visual feedback from its own
movement (i.e., the animal continually monitors the object’s position). For this, the
movement source must remain visible throughout the execution of the turn. In con-
trast, an open-loop turn is not governed by feedback (i.e., open-loop turns work on a
single instruction). For example, movement detected 80deg to the animal’s left can
be envisaged as initiating an open-loop algorithm that reads, “turns 80 deg to the left,
then stop.” A closed-loop algorithm, in contrast, can be envisaged as reading some-
thing like “turn a little in the direction of the movement source, after which, if the
movement source is in front, stop; otherwise, repeat from the beginning.”

An open-loop movement means that if the movement source is removed during
the act of orientation, the animal will nevertheless be pointing toward the object’s
last position at the completion of its turn. Salticids generally orient toward a target
in a single turn, suggesting that they rely primarily on an open-loop algorithm. How-
ever, turning is occasionally performed as a series of smaller turns, which may mean
that they sometimes use a mixture of closed- and open-loop algorithms (M. F. Land,
1971).
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Control of orientation toward moving objects is the best known, but not the only,
function of the secondary eyes. The interplay of object size, velocity, and movement
pattern may be important cues governing different responses. For example, objects
that loom up (i.e., suddenly make bigger retinal images) may trigger a “panic” response
(Heil, 1936). Furthermore, the speed at which an object moves influences the salti-
cid’s reaction. A slowly moving object (e.g., less than 1deg/s for M. aeneolus), gener-
ally elicits no response. However, rapidly moving objects (e.g., greater than 100deg/s
for M. aeneolus) can provoke a “panic” response if they are large, or a chasing response
if they are small (Heil, 1936; Drees, 1952; M. F. Land, 1971; Forster, 1985).

During a “panic” response, a salticid may hide quickly, make a wild leap and then
freeze, or simply flee. When fleeing from a predator, salticids appear to use informa-
tion from the PL eyes to keep a pursuer directly behind them (M. F. Land, 1971).

In contrast, when chasing prey, salticids appear to use information from the ante-
rior lateral (AL) eyes to keep the prey directly in front of them (Drees, 1952; Forster,
1979). Unlike the other secondary eyes, each AL eye contains a forward-facing foveal
region with higher spatial acuity (Eakin and Brandenburger, 1971; M. F. Land, 1974).
The function of the AL fovea has not been studied, but perhaps it has a role in range-
finding or in guiding the principal eyes’ saccades.

Range-finding, or distance estimation, is the determination of the distance to an
object in the visual field. This ability is important when a salticid is hunting and
when it is planning detours. The AL eyes have a forward-facing region of binocular
overlap (figure 1.6), which also overlaps the fields of view of each principal anterior
median (AM) eye (M. F. Land, 1985b). Experiments in which various eyes were
covered with opaque wax or paint suggest that the binocular overlap of the AL eye,
in conjunction with the AM-AL overlap, plays a role in range-finding (Homann, 1928;
Heil, 1936; Forster, 1979), but the specific contributions of each eye are not well
understood.

If distance estimation is restricted to the region of binocular overlap, this may
impose a significant constraint on the spider. That is, an object (e.g., an insect) in the
lateral visual field may be detected by the secondary eyes, but its distance may unde-
terminable until it is in the frontal visual field. Suppose, for instance, that a large
object (subtending 10deg) is moving behind the salticid. From the spider’s perspec-
tive, this could be a small, near object (e.g., insect prey), or a large, distant object (e.g.,
a predatory bird). An orienting turn might provide an answer, because it would allow
the principal eyes to assess the details of the object, but with the risk of scaring off
potential prey or falling victim to a predator. Larger turns probably increase the risk
of both these outcomes. This may explain why Portia and other salticids appear willing
to make short turns but reluctant to make larger turns (see M. F. Land, 1971).

The Principal Eyes

For a salticid, as for many vertebrates, orienting toward an object brings a specialized
part of the visual system to bear on the target, in the spider’s case the retinae of the
large anterior median, or principal, eyes (figure 1.3). As indicated earlier, because of
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their structure, these eyes can provide information that is different from, and more
detailed than, that provided by the secondary eyes. Using their AM eyes, salticids can
discriminate between at least five broad classes of objects: mates, rivals, prey, preda-
tors, and features of the environment (Homann, 1928; Heil, 1936; Crane, 1949; Drees,
1952; Forster, 1979, 1982b). Some of the most basic decisions made by salticids in
their day-to-day lives depend on this information. For example, Portia plans and exe-
cutes detours based primarily on optical features of the environment acquired by the
AM eyes (Tarsitano and Andrew, 1999). Its choice of signals during an encounter with
a web-building spider depends on visually acquired feedback about the identity and
behavior of the prey; and Portia fimbriata can visually discriminate between prey and
conspecifics at distances of up to 46 body lengths (Jackson and Blest, 1982b; Harland
et al., 1999).

The AM eyes also make it possible for salticids to identify environmental features
in order to navigate detours, and this can be done at distances as far as 85 body lengths
(Tarsitano and Jackson, 1997).

The Structure of the AM Eyes On the outside of the salticid’s anterior carapace are
the large corneal lenses of the principal eyes. In salticids the cornea is formed by the
carapace and it is both immobile and nonmalleable. Beyond the surface of the cornea
there is a gradient in lens density that corrects the spherical aberration caused by the
corneal surface (Blest and M. E. Land, 1977; D. S. Williams and McIntyre, 1980; Forster,
1985; see M. F. Land and Nilsson, 2002).

Despite their large size, the combined fields of view provided by the corneal lenses
of the AM eyes are eclipsed by those of the flanking AL eyes (M. F. Land, 1969b, 1985Db).
This is because the focal length of the AM lens is greater than that of the AL lens. A
greater focal length means higher magnification. However, magnification comes at a
price. Magnifying an image can be envisaged as spreading the light more thinly over a
larger area. Hence, to magnify an image and retain the same brightness, more light is
required. The only way to get more light is to make the corneal lens wider. The other
consequence of magnifying an image is that the more it is enlarged, the less of it will
be in view. In short, by having a longer focal length, the AM eyes have smaller fields of
view than the secondary eyes and yet they require larger lenses. Only larger lenses can
provide enough light to maintain an acceptable quality for the magnified images.

Behind the AM corneal lens is a long, slightly tapering eye tube (figure 1.7).
Transparent glass cells fill all except the rearmost part of the eye tube. After passing
through the glass cells, light enters the matrix of cells supporting the retina (Eakin
and Brandenburger, 1971). Along the optical axis, the anterior interface of this
supportive matrix forms a concave pit just in front of the retina. This pit functions as
a diverging lens that magnifies the image from the corneal lens (figure 1.8), boosting
the eye’s overall focal length. In P. fimbriata, the focal length of the corneal lens alone
is 1701 um. With the pit magnifying the image from the corneal lens, the eye acts as
a telephoto lens system with a focal length of 1980um (D. S. Williams and McIntyre,
1980).
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Figure 1.7

Morphology of the anterior median eye of Portia. Light (yellow line) enters the eye through
the corneal lens and passes down the eye tube (cut along its sagittal plane), which is filled
with (low optical density) glass cells. It is then magnified by the secondary lens (pit) formed
by the interface with the (high optical density) glial matrix. The images focus within the

retina.
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Figure 1.8

Telephoto optics of the salticid principal anterior median eye. The image (I) of an object
(O) is projected by the corneal lens (C) onto the retina after being magnified by a second-
ary (diverging) lens (S) to make an image of size I. I' shows the approximate size and posi-
tion of the image without the secondary lens. (Adapted from D. S. Williams and McIntyre,
1980.)
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Salticids are not alone in using a diverging lens as a space-saving method of
increasing image magnification. The eyes of falconiform birds also have foveal pits
that operate as telephoto components, providing these birds with the highest spatial
acuity known for any animal (up to 2.6 times greater than our own) (A. W. Snyder
and Miller, 1978).

After being magnified by the secondary lens, the image is brought into focus on
a complex retina. Unlike our own retina, the photoreceptors in the salticid AM retina
are stacked in four successive tiers, or layers, along the light path (figure 1.9; plate 1).
To reach the rearmost tier, layer I, light must pass through layers IV, III, and II (M. E.
Land, 1969a; Eakin and Brandenburger, 1971; Blest et al., 1981).

Color Vision

The tiered arrangement of the AM retina plays a critical role in color vision. Light is
split into a spectrum by the telephoto optics, with different wavelengths coming into
focus at different distances. This is known as chromatic aberration (M. F. Land and
Nilsson, 2002). Short wavelengths come into focus in layer IV, and longer wavelengths
come into focus in layer I. Color vision based on chromatic aberration is effective
because the photoreceptors in each layer contain different rhodopsins, each of which
is sensitive to the wavelength that comes into focus on that layer (figure 1.10A)
(M. E Land, 1969a; Blest et al., 1981).

Although receptors sensitive to ultraviolet (UV), blue, green, and yellow have been
found in the AM retinas of a few salticid species (DeVoe, 1975; Yamashita and Tateda,
1976), receptor location has been determined for just one species. Blest et al. (1981)
found that the receptors in layer IV of Plexippus validus (Urquhart) have a peak
absorbency in the UV range (-360nm), and that receptors in layers I and II have a
peak absorbency at 520nm (green) (figure 1.10B). Although Blest and colleagues did
not succeed in sampling receptors from layer III, optical calculations based on the
position of the green and ultraviolet receptors suggest that peak absorbency in blue
would enable layer III receptors to receive maximally sharp images. Wavelengths
longer than green (e.g., red, ~700nm) may also be absorbed at low efficiency by the
green receptors in layers I and II (Peaslee and Wilson, 1989).

Whether salticids can discriminate light in the green region of the spectrum from
light in the red region remains more controversial. Although physiological and optical
studies have failed to find convincing evidence of separate green and red receptors,
there are reasons to expect that discrimination is possible. In many salticid species,
males have distinct red patches in their body patterns that are usually associated with
courtship (figure 1.10C; plate 7), and the results of one study (Nakamura and
Yamashita, 2000) suggest that salticids can learn to avoid red or green colored paper
when that color is associated with heat punishment.

The tiered arrangement of the AM retina makes it tempting to suggest that salti-
cid color vision operates by combining images from the different receptor layers into
a single colored picture. However, this is probably not done, given the fact that none
of the receptor mosaics match because receptors in different layers along any
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Figure 1.9

Structurally complex retina of Portia fimbriata’s principal eye. Behind the pit (secondary
lens) are four layers of receptors (I, II, III, and IV) stacked along the optical axis. Layers II,
III, and IV contain more than one receptor type. Most receptors are short, with irregular
transverse cross-sectional profiles. Layer I is highly ordered with well-separated receptive
segments. Separation reduces interreceptor interference. Spatial acuities as low as 2.4 min
arc are supported by the central fovea of layer I. The orthographic view is taken
55deg from the inner side of the optical axis (opt. axis) of the secondary lens. Orientation:
d, dorsal; m, medial; 1, lateral; v, ventral. Electron micrographs and structural descriptions
were used to construct the drawing taken from D. S. Williams and McIntyre (1980), Blest
et al. (1981), Blest and Price (1984), and Blest (1987a,b). (See plate 1 for color version.)
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Figure 1.10

Hypothetical mechanism responsible for salticids’ color vision. (4) Chromatic aberration
of the anterior median eye optics is harnessed because green, blue, and ultraviolet (UV)
components of an image come into focus on layers I, III, and IV, respectively. (B) Spectral
sensitivity of marked cells from layers IV, II, and I within the AM eye of Plexippus validus.
(Adapted from Blest et al., 1981.) (C) Undescribed adult male salticid from Sri Lanka
showing colored patches associated with courtship, including red patches on the femur of
each front pair of legs. (Photo by D. Harland.) (See plate 7 for color version.)
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specific light path are of different sizes and shapes. Hence, the salticid cannot derive
a color picture simply by combining information in a receptor-for-receptor (or point-
for-point) manner. What color means to a salticid is one of the bigger unresolved
questions about their vision. Obtaining an understanding of the psychological
meaning of color for salticids will be an especially challenging problem for future
research.

Possible Functions of the Low-Acuity Layers IV, Ill, and Il

Structural differences in each of the layers suggests that they have functional differ-
ences that go beyond color vision. layer IV, the layer with the fewest receptors, is the
first layer through which light passes in the AM retina (figure 1.9). This layer has the
poorest spatial acuity but the most complex topography (figure 1.11; plate 2) (M. F.
Land, 1969a; Eakin and Brandenburger, 1971; Blest et al., 1981; Blest and Price, 1984).
A well-organized vertical strip of receptors lies along the outer side of the AM retina
(4a), but the mosaic in the middle of the retina (4b) is poorly organized. Poorly organ-
ized regions also lie scattered peripherally (4c). The kind of information provided by
layer IV is unclear. However, it has been suggested that region 4a detects the polar-
ization plane of ultraviolet light (M. F. Land, 1969a; Fakin and Brandenburger, 1971).
In other arthropods (K. von Frisch, 1949; Brines and Gould, 1982; Fent, 1986), UV
polarization detectors act as a “sky compass” during navigation. Ultraviolet polariza-
tion detectors have been identified in the AM eyes of lycosid spiders (Magni et al.,
1964, 1965) and the secondary eyes of certain gnaphosid and lamponid spiders (Dacke
et al., 1999), but there have been no behavioral studies to determine whether salti-
cids detect UV light polarization or use such a sky compass.

Layer III is located directly behind the central region of layer IV and is confined
to a roughly circular patch in the middle of the retina (figure 1.12; plate 3) (M. F. Land,
1969a). The functions of this layer are least well understood.

In Portia, layer III is populated with large, irregularly arranged receptors. Unlike
the secondary eye retinae, receptors in the AM eye retina are not separated by pigment.
This means that the functional independence of neighboring receptors depends on
them not touching. However, in layer III, thabdoms are often contiguous, which sug-
gests a very low spatial acuity. In some other salticids, layer III is somewhat more
organized than in Portia, but still not to an extent that can support more than modest
spatial acuity (Eakin and Brandenburger, 1971).

In most salticids, the receptor mosaic of layer II has rhabdoms that are more reg-
ularly arranged and in which the rhabdomeres are less erratically contiguous than in
layer III. However, this is not the case in Portia. Portia’s layer II is only slightly more
organized than layer III (figure 1.13; plate 4). The rhabdoms in layers II and III differ
in appearance, depending on whether they are derived from the outer (2a and 3a) or
from the inner (2b and 3b) side, but the functional significance of how they differ is
not known.

In transverse section, layers I and II have a laterally compressed strip of recep-
tors with a slight bend in the middle. The result is a boomerang-shaped (figures 1.13
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Figure 1.11

The retina of Portia fimbriata’s principal eye showing layer IV (shown in blue) in detail. The
position of layer IV relative to other layers within the retina is shown at the top left (view
angle as in figure 1.6). The transverse profile of the retina is on the right. Three types of
receptors make up layer IV. Type 4a receptors form a well-organized vertical strip that may
act as a simple line detector and/or be used to analyze UV polarization. Type 4b receptors
form a poorly organized central patch. Type 4c receptors are scattered to the side (their
positions within the figure are approximate). No function has been hypothesized for type
4b and 4c receptors. Orientation: m, medial; 1, lateral; d, dorsal; v, ventral. (See plate 2 for
color version.)
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Figure 1.12

The retina of Portia fimbriata’s principal eye showing layer III (shown in yellow-orange) in
detail. The position of layer III relative to other retinal layers is shown at the top left (view
angle as figure 1.6). The transverse profile of the retina is on the right. Two types of recep-
tors make up layer III: 3a and 3b receptors, which are large, short, irregularly disposed, and
have rhabdomeres that are erratically contiguous. Layer III could receive an in-focus image
in blue. The quality of any image sampled by this layer would be poor. (See plate 3 for color
version.)
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Figure 1.13

The retina of Portia fimbriata’s principal eye showing layer II (shown in green) in detail.
The position of layer II relative to layer I is shown at the top left (view angle as in figure
1.6). The transverse profile of the retina is on the right. Two types of receptors make up
boomerang-shaped layer II. At the fovea of 2b, the receptors have small interreceptor
angles (although not as small as in layer I), but are arranged in a disorderly manner. The
receptors increase in width toward the periphery of the boomerang arms, and the mosaic
becomes more regular. Compared with layer I, the receptors in layer II are short. In P.
fimbriata, layer II does not appear to be adapted for high-acuity vision. Orientation: d,
dorsal; v, ventral; m, median; 1, lateral. (See plate 4 for color version.)
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and 1.14; plates 4 and 5) receptor mosaic in each of these layers, the boomerang of
layer II lying over that of layer I. In Portia, receptor width, and therefore interrecep-
tor spacing, in the central region of layer II (i.e., the region close to the optical axis),
tends to be much greater than in the central region of layer I. This means that the
central region of layer II has much lower spatial acuity. In layers I and II, receptor
width and spacing tend to increase steadily toward the periphery until, at the ends of
the boomerang’s arms, interreceptor spacing for layers I and II roughly matches
(figures 1.13 and 1.14).

Compared with the relatively high acuity of their central regions, the peripheral
regions of layers I and II support only low spatial acuity. The structure of the secondary
lens appears to be responsible for image quality rapidly falling off away from the fovea
(Blest and Price, 1984). Close to the optical axis, the secondary lens magnifies without
distortion, but the steep sides of the pit produce a distorted image away from the
optical axis.

Because of its low acuity, the function of the peripheral retina probably differs
from that of the central retina. For example, the periphery of layers II and I may play
a role in stimulating eye tube movements (see later discussion) that line up the center
of the retina on moving stimuli (Blest and Price, 1984).

The receptors in both layers II and I have almost identical absorbency spectra
(figure 1.10B) (Blest et al., 1981). It is unlikely that layer II plays a role in shape
perception because its image is out of focus whenever the layer I image is in focus.
Perhaps layer II functions in detecting light intensity (Blest et al., 1981), has a role
in pattern recognition that somehow complements the role of layer I (Blest and
Price, 1984), or works with the secondary eyes to center the AM retinas on moving
objects.

High-Acuity Vision: Layer |

Only layer I has the fine, regular mosaic of receptors necessary for detailed vision
(figure 1.14). The internal structure of the receptors, their width and length, and their
spacing in relation to other receptors are all factors that when combined define sam-
pling performance. In the foveal region of layer I, the rhabdomeres are narrow and
densely packed, which maximizes spatial sampling. In the fovea, neighboring recep-
tors have a center-to-center spacing as low as 1.4um, which appears to be optimal.
The rhabdomeres in layer I are also separated by cytoplasm-filled spaces, which helps
isolate them optically.

Compared with other layers, layer I receptors are long, with the longest and
narrowest in the fovea (figure 1.9). The additional length improves the probability
that photons entering the comparatively narrow receptor will be absorbed (and
hence detected).

The receptors in layer I also appear to function as light guides, which improves
sampling quality in two ways. First, only light in focus on the receptor’s distal tip
is accepted; this reduces the probability that photons will be lost to a neighboring



31  Portia Perceptions

slaircase

Figure 1.14

The retina of Portia fimbriata’s principal eye showing layer I (shown in red). The top left
shows a view 55deg to the medial side of the optical axis (view angle as in figure 1.6). (A)
Transverse profile of the retina showing the detail of the layer’s boomerang-shaped mosaic.
Layer I receptors are characteristically long, with a hexagonal cross-section. The mosaic is
regular, formed by rows of receptors. Receptive segments (thabdomeres) tend to be well
separated (reducing interreceptor interference), with spacing as little as 1.4um at the fovea.
There is a gradual increase in receptor size (and spacing), and a gradual decrease in recep-
tor length toward the periphery of the boomerang arms. (B) Longitudinal view from above
of a row of foveal receptors. These receptors are longest and arranged like a staircase. Images
of objects located from a few body lengths distant out to infinity come into focus on the
distal (anterior) tips of one or more receptors. Orientation: d, dorsal; v, ventral; m, median;
1, lateral. (See plate 5 for color version.)
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Layer I receptor acting as a light guide. Light focused on the rhabdom’s anterior tip is
trapped in the rhabdomere by internal reflection. Light passes back and forth through
rhodopsin in the rhabdomere, enhancing its probability of being absorbed (detected).

receptor. Second, the receptors act as fiber optic cables. This effect is a consequence
of the interior of the rhabdomeres being more dense than the surrounding cytoplasm.
Photons entering a thabdomere tend to get trapped by reflecting off of the optically
dense rhabdomere edges. Total internal reflection enhances the likelihood that a
photon will be absorbed (figure 1.15).

Layer I is specialized for resolving fine-grain spatial details, but sampling ability
also depends on image quality. As noted, layers other than I have large receptors and
poor sampling quality. In fact, the poor sampling quality of the more distal layers,
II-IV, may be necessary for layer I to receive a maximally detailed image (D. C.
Williams and McIntyre, 1980; Blest et al., 1981); that is, the interreceptor spacing and
the way in which the receptors are arranged in layers II-IV diminish these layers’
spatial acuity, but only minimally degrade the image received by layer I.

The minimum interreceptor angle in Portia’s layer I fovea is 0.04 deg (2.4 arc min)
(Williams and McIntyre, 1980). In practical terms, this means that, from a distance
of 200mm, Portia should be able to discriminate between objects spaced 0.12mm
apart.

Compensating for Fixed-Focus Optics
The narrow receptors in the salticid’s fovea can work as light guides only as long as
light is focused on their distal tips. Unlike a vertebrate’s eye, the salticid AM eye is a
fixed lens system; i.e., it cannot accommodate. Hence, objects at different distances
will come into focus at different distances behind the AM lens. For any specific recep-
tor in layer I, when a close object is in focus on the receptor’s distal tip, more distant
objects tend to be out of focus (and vice versa). However, having the receptors arranged
in a spatial pattern that eliminates the need for accommodation solves this potential
problem.

Different parts of the foveal region of layer I are positioned on a “staircase” so
that their distal tips are at different distances behind the lens (figure 1.14B). Hence,
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images of objects at different distances come into focus on different “stairs.” The depth
of the staircase (~20um) is sufficiently large to allow an in-focus image to form on at
least one of the “stairs” from approximately two body lengths away to infinity (Blest
et al., 1981). Only the layer I fovea has this structure.

The Active Principal Eye

Telephoto optics in conjunction with the unique structure of the AM retina appears
to provide a solution to the problem of how a fixed-lens eye can provide both color
discrimination and high spatial resolution. However, as a tradeoff, there is a drastic
reduction in the AM retina’s field of view. Portia’s layer I fovea is only fifteen recep-
tors across, giving it a field of view little more than 0.6deg wide, much less than the
~30-40deg provided by the corneal lenses. What is more, most objects examined by
the eye will be out of focus at some part of the “staircase,” making the fovea’s effec-
tive field of view even narrower. Despite these limitations, the fovea supports the
remarkable feats of visual discrimination that underlie much of Portia’s complex, flex-
ible behavior.

The AM eye is an “active” eye and this may be the key to understanding how the
AM retina’s narrow field of view works. Movement of the eye’s field of view over a
scene probably forms a critical part of how perception works for salticids (Kaps and
Schmid, 1996). Using six muscles attached to its outside, each AM eye tube can be
moved with threedegrees of freedom: vertical, horizontal, and rotational (figure 1.16)
(M. F. Land, 1969b). These are the same threedegrees of freedom with which our own
eyes move, although we are typically unconscious of the small rotational movements
(Mcllwain, 1996).

Small lateral eye-tube movements allow the salticid to sweep the layer I “stair-
case” over an object in the visual field, and larger eye movements allow this spider to
sample the larger image projected by the corneal lens. The movements of the AM
eyes, which can be complex, are probably a critical factor in how salticids process
visual information, especially shape and form (M. F. Land, 1969b; M. F. Land and
Furneaux, 1997).

Fach boomerang-shaped AM retina sits in the salticid’s cephalothorax with its
“elbow” pointing out laterally (see figure 1.14). However the optics of the eyes invert
the image both vertically and horizontally. The resulting fields of view of the two AM
retinas, when held together, form an “X,” with the fields of view of the two foveas
not quite intersecting (see figures 1.6 and 1.17).

The X can be moved in four basic ways. The first is with wide-angle spontaneous
scanning movements (figure 1.17A). At varying speeds, the center of the AM retina
wanders over a large horizontal and vertical field, possibly searching for objects on
which to fixate. These movements may cover the entire visual field of the AM eyes.
The second is with saccades (figure 1.17B). These are rapid movements in which the
centers of the retinas of both AM eyes move to fixate on some object that has just
moved. Third is tracking (figure 1.17C). These are movements that keep the retinae
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Figure 1.16

Top view of Portia fimbriata’s left AM eye showing probable positions of eye muscles. Five
muscle bands attached to the eye tube allow the retina to be moved (inset) in the hori-
zontal and vertical planes, and rotated about 30deg in either direction. Although the
corneal lens is wider than the eye tube (giving the eye its distinctive “mushroom” shape),
the retina’s field of view is never blocked because at any one time it samples only a small
part of the corneal lens’s field of view and because it can be moved to where the images
from the sides of the corneal lens are visible. (The muscles and their numbers are taken
from M. F Land, 1969b. The eye tube is adapted from D. S. Williams and McIntyre, 1980.)

of both AM eyes fixated on a moving object. The fourth is scanning (figure 1.17D).
Scanning occurs after the AM retinae fixate on a new target. During scanning, the
most complex of the four movement patterns, the AM retinae move back and forth
across an object at 0.5-1Hz (approximately over the width of the layer I “staircase”),
while they slowly rotate through an arc of about 50deg.

In spite of their potential heuristic value, there are as yet no detailed studies of
the movements of Portia’s AM eyes. However, it is known that the AM eyes of Portia
fimbriata are more active than those of any other species that has been examined
(D. S. Williams and McIntyre, 1980). In fact, they move almost continuously, even in
complete darkness (D. P. Harland, unpublished results).

What the AM Eye Sees

The small window of high spatial acuity provided by layer I in the AM eye may have
important implications for the kinds of fine-grained optical cues potentially available
to Portia. Behavioral investigations of the optical cues that Portia fimbriata uses to
discriminate between prey and nonprey has confirmed what the structural and
optical investigation of the principal eye suggests. A number of critical visual cues are
provided by very small, specific regions of the prey’s body (Harland and Jackson,
2000a). The limited field of view provided by the AM retina means that when one
region of the prey is under inspection, other regions are no longer in clear view. The
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Figure 1.17

Summary of four types of eye movement made by the salticid anterior median eye. Fields
of view from two boomerang-shaped retinae combine to create an X-shaped field of view.
The arrows indicate retinal movement. (A) Spontaneous activity; retinae move unpre-
dictably over a scene. (B) Saccades; fields of view are fixated on an object (the black square).
(C) Tracking; keeps retinae fixed on a moving object. (D) Scanning; a newly acquired object
is examined by moving fields of view back and forth while slowly rotating one way, then
another. (Adapted from M. F. Land, 1969b.)

way in which the visual world is structured from such small high-resolution images
appears to depend on both the pattern of the spider’s eye movements and its ability
to remember what cues it has seen.

Portia’s Umwelt

Although salticids rely on more than one sensory modality, vision is primary. Unlike
any other spider, a salticid locates, tracks, stalks, chases down, and leaps on active
prey, with all phases of the predatory sequence under visual control (Forster, 1982a).
Using visual cues alone, salticids discriminate between mates and rivals, predators and
prey, and different types of prey, as well as other features of their environment (Crane,
1949; Drees, 1952; Heil, 1936; Jackson and Pollard, 1996; Tarsitano and Jackson, 1997;
Harland et al., 1999; Harland and Jackson 2000a, 2001, 2002).
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Much of human behavior, and cognition, is vision based (Dennett, 1991). Hence,
we may overestimate the advantages of vision and underestimate what can be done
with other sensory modalities. This potential bias notwithstanding, it seems to be the
case that Portia’s acute eyesight has a profound influence on both its behavior and its
putative cognitive abilities. Portia’s detouring behavior illustrates this point especially
clearly.

Portia’s ability to plan and execute long detours requires visual acuity sufficient
to examine the spatial relations between objects from a distance (Tarsitano and
Andrew, 1999). This visual acuity also enables it to accurately identify the location
and behavior of its prey from a distance (Jackson, 1995; D. Li and Jackson, 1996;
D. Li et al., 1997). All of this visual information is critical in enabling Portia to execute
its flexible predatory tactics.

Almost a century ago, Jakob von Uexkiill (1909) considered how sensory systems,
styles of behavior, and cognitive profiles are interrelated. No animal, including
humans, has simple, direct access to an independent physical universe. Instead, each
operates inside a subjective “model” of the world (von Uexkiill, 1934), or what von
Uexkill (1909) called the animal’s Umwelt. This is roughly translated as an animal’s
“self-world” (C. Schiller, 1957), a product of the organism’s sensory intake, internal
state, central processing capabilities, and motor patterns.

Natural selection sees to it that the Umwelt is not arbitrary (e.g., Dawkins, 1996); it
has to work for the animal, enabling it to survive and propagate. However, a critical
insight of von Uexkiill’s is that one can expect important differences among animals in
the character of how they experience what is to them the outside world (Deely, 2001).

Obtaining an understanding of Portia’s Umwelt may be a tractable problem, but it
should not be confused with the notion that we might somehow come to know
directly what it is like to be a Portia (e.g., Nagel, 1974). Although studying its sensory
systems, behavior, and cognitive processes will never reveal to us precisely what it is
like to be Portia, this is a valid approach to learning something more tangible.
Although it is no trivial task, we can expect eventually to comprehend Portia’s Umwelt.
Although we are still a long way from this goal, we may be able to shed light on some
of the most interesting issues with a final story.

In a Queensland rain forest, we find Portia fimbriata sitting on a portion of a vine
that has fallen away from a tree trunk (figure 1.18A; plate 6). Based on what we know
about this araneophagic predator, we think that Portia is prepared, in a way that we
are not, to perceive webs, spider-sized animals, and potential pathways to the web via
the vine and neighboring vegetation.

Of course, Portia’s Umwelt is built from more than just visual information. In this
story, for example, its feet and palps have touched silk lines on the vine’s surface, trig-
gering a number of chemoreceptors. Some of the silk is from Jacksonoides queenslandi-
cus, and airborne chemical cues carry the odor of this spider. However, the source of
information may not be important for Portia. In this example, chemosensory infor-
mation from J. queenslandicus may prime Portia to detect visual cues associated with
this familiar prey.
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One way of interpreting such a priming effect is to suggest that chemical cues
elicit some kind of representation of J. queenslandicus somewhere in Portia’s central
nervous system, although what this representation might be is not clear. Certainly, it
need not be anything like a picture of or the idea of the prey (Gardenfors, 1996). A
more plausible explanation might be that the chemosensory information lowers the
thresholds for responses by central nervous system modules (or feature detectors) asso-
ciated with the visual system. What we do know is that chemosensory and visual infor-
mation work together to underpin predatory behaviors appropriate for capturing
J. queenslandicus. We are still a long way from understanding precisely how this is
done, however.

The question of whether Portia’s Umwelt includes anything like the visual images
(or “pictures”) that we see remains unresolved, but the extraordinary eyesight of these
spiders encourages us to explore this possibility. Acute vision may indeed be a central
pillar of an Umwelt that requires recognizing distinct objects distributed at precise loca-
tions in space. This is, of course, what humans experience, and it may be reasonable
to assume that Portia’s experiences are similar. On the other hand, given that the
structural details of Portia’s eyes are so different from ours, we should also expect
important differences in the subjective world that they help to create.

Movement of objects in the outside world must be a highly relevant part of Portia’s
Umwelt. The anterior lateral eyes provide input about movement within a range of 45
deg to either side of the spider (figure 1.18C); the remaining secondary eyes gather
movement information beyond that, and even behind Portia’s body.

Portia’s Umwelt probably includes objects positioned at more or less precise dis-
tances, and the AL eyes probably play a major role in providing that information. The
AL eyes’ fields of view overlap directly in front of Portia, and toward the center of the
visual field, the visual angle between receptors decreases from approximately 1deg
to just 0.4deg. A disparity between the images in the AL retinae probably provides
information about an object’s distance. Information about additional features of the
visual world, such as an object’s shape, size, and color, are probably provided by the
anterior medial eyes.

In this final story, for example, information from the AL eyes has directed the AM
eye tubes to move their tiny field across the scene provided by the AM corneal lenses
(figure 1.18D). Its AM eyes are now examining a moving object that is slightly off
center. As explained earlier, the AM eye tubes are highly active, and our hypothesis is
that this “scanning” activity serves to abstract relevant information from the retinal
images. Input from particularly salient cues may in turn trigger patterns of scanning
designed to search for certain additional visual cues that the initial cues have primed
the spider to recognize. Perhaps through this type of sequential scanning for particu-
lar cues, a central nervous system-based representation of the object is constructed
(figure 1.18F). The salticid eye may be surprisingly good at assessing the details of
objects. However, as a consequence of doing its analysis via eye-tube movements and
using a retina with only a small number of receptors, it probably takes much more
time than analogous processing by a vertebrate.
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Figure 1.18
Portia fimbriata’s view of the world. (4) Portia’s forest habitat (approximately 90deg wide).
The circles show some key points of interest for Portia. (B) Representation of Portia’s
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chemoreceptive environment. (C) Representation of the view seen by anterior lateral eyes.
Note the region of binocular overlap used in range-finding and foveal regions. (D) Field of
view provided by anterior median eyes. (E) View seen by the four layers of the AM eyes
during inspection of other Portia. (F) View showing elements that Portia has abstracted from
the scene using its AM eyes during several minutes of looking around. (See plate 6 for color

version.)
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Watching Portia pursue prey tends to be a drawn-out exercise; this spider moves
through its predatory sequence at a speed that is tedious for a human observer. It may
be the case that a unique (or at least a nonhuman) sense of time is a key part of
Portia’s Umwelt. The slowness of scanning-based construction of an object suggests
interesting ways in which the perception of time by Portia might differ from our own
notion of time.

Although this limited attempt to characterize Portia’s Umwelt does not put us
directly in this spider’s shoes, it is a necessary, initial step toward its reverse engi-
neering (Dennett, 1995). That in turn can be a step toward building a robot that can
solve problems and behave as Portia does. Knowing what it is like to be Portia may
amount to much the same thing.
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