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Abstract

Deep learning and predictive coding architectures commonly assume 

that inference in neural networks is hierarchical. However, largely 

neglected in deep learning and predictive coding architectures is the 

neurobiological evidence that all hierarchical cortical areas, higher 

or lower, project to and receive signals directly from subcortical 

areas. Given these neuroanatomical facts, today’s dominance of 

cortico-centric, hierarchical architectures in deep learning and 

predictive coding networks is highly questionable; such architectures 

are likely to be missing essential computational principles the brain 

uses. In this Perspective, we present the shallow brain hypothesis: 

hierarchical cortical processing is integrated with a massively parallel 

process to which subcortical areas substantially contribute. This 

shallow architecture exploits the computational capacity of cortical 

microcircuits and thalamo-cortical loops that are not included in typical 

hierarchical deep learning and predictive coding networks. We argue 

that the shallow brain architecture provides several critical benefits 

over deep hierarchical structures and a more complete depiction of how 

mammalian brains achieve fast and flexible computational capabilities.
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briefly consider these reasons below, demonstrating that the evidence 

they provide is not as strong as previously conceptualized.

The original notion of hierarchical processing in the cortex8 was 

based on anatomical and neurophysiological findings in the primary 

visual cortex and higher visual cortical areas8,29–31. Of particular impor-

tance were the tracing studies by Rockland and Pandya32 and the wiring 

diagram of Felleman and Van Essen27, which suggested a hierarchical 

structure between cortical areas based on the anatomical connectivity 

pattern (see also refs. 33,34) (Fig. 1b). Electrophysiological evidence 

supported this view35–37, such as the presence of larger receptive fields 

and longer onset latencies in higher compared with intermediate or 

lower cortical areas. However, hierarchically distant cortical areas can 

be directly and reciprocally connected via cortico-cortical connec-

tions (see refs. 35,36). Moreover, a new analytic method for determin-

ing the hierarchy of mouse visual cortical areas revealed that many 

connectivity patterns that had previously been seen as hierarchical 

were non-hierarchical lateral connections35,38, consistent with an older 

study of rat visual cortices39. More importantly, as we detail in the next 

section, direct empirical evidence that cortical areas, higher or lower, 

project to and receive inputs from subcortical regions supports an 

alternative view to hierarchical processing, namely shallow processing.

The second reason for favouring hierarchical structures as models 

of neural processing has been theoretical. Influential papers argued 

that the hierarchical structure of the cortex allows the brain to per-

form hierarchical Bayesian inference16,18 — a way to learn from data 

by combining prior knowledge with newly arriving inputs. This idea 

of hierarchical Bayesian inference has been the dominant framework 

in neuroscience over the last decade17,40–43. Over the years, empirical 

support has emerged for local computation of prediction errors in 

the sensory cortex44 (for instance in the visual cortex (see refs. 45,46), 

but see also refs. 47,48 for different interpretations). However, only 

a few studies have used electrophysiological methods to explicitly test 

the key premises of hierarchical Bayesian inference theory49, such as the 

propagation of predictions or prediction errors across several levels 

of the cortical hierarchy (for example, level n, n + 1, n + 2)50–52. Further-

more, predictive coding-like algorithms can be implemented locally 

without the hierarchical propagation of errors and predictions21,53,54 

(and also by lateral non-hierarchical connections44). Last, and most 

relevant to the shallow brain hypothesis, it has been noted that hier-

archical predictive coding can be mediated or facilitated by thalamic 

computations26,42.

More functionally motivated support for hierarchical learning 

comes from deep learning. The predominant view in deep learning 

has been that deep architectures perform better than shallow ones55,56 

and that shallow architectures cannot solve certain problems (such as 

classification problems where the data are not linearly separable)2,28. 

However, the past two decades have shown a rise in the capabilities of 

shallow neural networks such as restricted Boltzmann machines57,58. 

Instead of relying on a deep hierarchy, restricted Boltzmann machines 

consist of only two layers — one visible and one hidden. Recent work 

has demonstrated that restricted Boltzmann machines can perform 

similarly to deep architectures on some standard benchmarks59, such 

as the MNIST database — a large database of handwritten digits com-

monly used for training and testing in the field of machine learning. In 

addition, current deep learning architectures have shown the ability to 

model and predict cortical neural responses, which is usually taken as 

evidence for hierarchical processing in the cortex10–13. However, recent 

evidence shows that previous studies might have overestimated the 

hierarchical alignment60.

Introduction

While the sustaining strength of the notion of hierarchical 

processing may be that it is rather simple, its fatal flaw is that 

it is overly simplistic1.

Deep learning has not only revolutionized the field of machine learn-

ing and artificial intelligence, but also had a substantial effect on our 

daily life2,3. Deep learning architectures commonly assume hierarchical 

structures; raw inputs (such as pixel values) are fed into the lowest hier-

archical layer, consisting of an array of artificial neurons that provide 

(feed forward) their outputs to the next, one-step higher layer, and 

so on2. Using tens of — sometimes more than a hundred4 — layers allows 

deep learning networks to encode progressively more abstract, complex 

features or information. The resulting hierarchical architectures have 

outperformed humans in tasks such as visual object categorization2,5. 

Deep learning architectures have many variants and some have recurrent 

connections2,6 in addition to feedforward connections, yet they predom-

inantly share the structure of a deep hierarchy. The layered, hierarchical 

structure that today’s deep learning architectures commonly adopt 

was inspired by earlier neurobiological findings in the visual cortices 

that higher cortical areas progressively encode more abstract visual 

features such as motion, contours and faces7–9 (Fig. 1a). Vice versa, deep 

learning architectures are inspiring neuroscientists to interpret brain 

computations in terms of hierarchical models10–15.

Predictive coding is a theory of brain function developed in theo-

retical neuroscience according to which the brain is constantly generat-

ing and updating internal models of the environment16–20. The models 

are used to generate predictions of sensory input that are compared 

with actual sensory input. Similar to deep learning architectures, com-

putational models of predictive coding17,21–23 commonly assume a hier-

archical structure. In this Perspective, we refer to predictive coding in a 

broad sense that includes hierarchical inference (for example, Bayesian 

inference) and other error-coding hierarchical models. Although some 

models incorporate the contributions of subcortical areas24–26, they 

also assume a hierarchy of cortical processing stages.

In this Perspective, we highlight that whereas deep learning and 

predictive coding assume an underlying hierarchy, neurobiological 

evidence suggests that hierarchical structures might not be as central 

to neural processing as commonly thought. Although we do not contest 

that hierarchical inference can be useful and is used in the cortex, we 

emphasize that there is another processing mechanism that is inter-

twined with the cortical hierarchy and is supported by neuroanatomy, 

which is what we call ‘the shallow brain hypothesis’. Next, drawing on 

the collection of neuroanatomical and electrophysiological evidence, 

we describe the shallow brain architecture and the key computational 

benefits of the proposed processing regime. Last, we discuss the impli-

cations of the shallow brain hypothesis and propose future research 

directions with specific testable predictions.

Rationale for assuming hierarchical architectures
Hierarchical architectures have become so dominant for several 

reasons. First, neurobiological findings on the connectivity pattern 

between cortical areas illustrated a hierarchical structural organization 

of the cortex8,27 where cortical areas are ordered from lower to higher 

areas. Second, an influential theoretical proposal has been that these 

cortical connectivity patterns allow the brain to perform hierarchi-

cal Bayesian inference16,18. Third, computer science spawned the idea 

that shallow architectures have computational limitations28. We will 
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Taken together, the findings in neurobiology and machine learning 

during the past two decades suggest that the reasons for preferring 

hierarchical architectures in models of cortical processing are not 

as convincing as they might have once seemed. This motivated us to 

look beyond hierarchical cortical networks for understanding brain 

function. Importantly, we do not question the principal relevance of 

predictive coding or deep learning algorithms but, rather, we simply 

question whether brain computations for cognition and behaviour are 

primarily processed by a hierarchical architecture of cortical areas.

Neuroanatomical evidence under-represented by 
most hierarchical architectures
The key reason to doubt the general plausibility of hierarchical archi-

tectures comes from the neurobiological evidence that all cortical 

areas, higher and lower, are directly connected to subcortical structures 

such as the thalamus61–64, striatum65,66, superior colliculus (SC)67–69, 

claustrum70–72 and brainstem (including the pedunculopontine nucleus 

(PPN) and mesencephalic locomotor region, brainstem reticular for-

mation and red nucleus)73–75 (Fig. 1c,d). Not only the primary sensory 

areas — the lowest in the hierarchy — but also even the higher associative 

cortical areas (such as the prefrontal cortex) project to these subcor-

tical regions. Higher associative cortical areas are believed to be the 

origin of top-down signals that are sent downward to sensory and motor 

cortices to modulate those lower primary areas; however, higher cor-

tical areas themselves also project to subcortical areas such as the 

thalamus, hypothalamus and brainstem73,74. Inputs to these higher areas 

come not just from lower cortical areas but also from subcortical areas; 

for example, parallel inputs from the thalamic pulvinar to higher visual 

areas serve as the scaffold on which the cortical hierarchy develops76.

Primary sensory cortices have been classically thought to con-

stitute the first stage of sensory cortical processing, and their output 

has been thought to pass the computed outcome to higher cortical 

areas for further processing. By contrast, recent studies have found 

that subcortical projections directly from primary sensory areas are 

crucial for advanced sensorimotor control77,78. For example, Tang 

and Higley found that cortical layer 5 pyramidal (L5p) neurons in the 

primary visual cortex (V1) that project to the brainstem pontine nuclei 

were necessary to learn a visually cued eye blink conditioning task77. 

Similarly, Takahashi et al. found that subcortically projecting L5p neu-

rons in the primary somatosensory area were crucial for whisker-based 

tactile detection78. These studies suggest that not only higher cortical 

areas but also primary sensory areas — believed to be the lowest stage 

of the cortical hierarchy and to merely process sensory information 

and then pass the outcome to the next level — send their computational 

results subcortically and contribute substantially to sensorimotor 

control (Fig. 1d) (but see refs. 79,80 for the important functions of 

hierarchically higher cortical areas). Importantly, in both studies, the 

behaviourally relevant cortical neurons were subcortically projecting 

L5p neurons (Fig. 1c). In general, pyramidal neurons in cortical layers 5 

and 6 project to the thalamic nuclei; those in layers 2/3, 5 and 6 project 

to the striatum; and only those in layer 5 project to the brainstem and 

spinal cord81,82. Intermingled with cortico-cortically projecting neurons 

across layers 2/3, 5 and 6 (refs. 83–85), such subcortically projecting 

pyramidal neurons are distributed across layers 2/3, 5 and 6 of higher 

or lower cortical areas at every hierarchical level (see ‘The shallow brain 

hypothesis’ regarding how cortical L5p neurons integrate information 

from other cell types in the cortex and subcortical areas).

Higher and lower cortical regions not only send projections 

subcortically but also receive direct inputs from subcortical regions. 

The thalamus broadly projects to cortical areas; for instance, the 

higher-order thalamic nuclei such as the pulvinar, ventromedial and 

intralaminar nuclei as well as the zona incerta widely project to higher 

and lower cortical areas86–90. Higher-order thalamic nuclei have clas-

sically been thought to merely modulate cortical activity, but recent 

findings suggest that these thalamic nuclei strongly drive the activity 

of cortical areas91,92; for example, the sustained neuronal activity in the 

prefrontal cortex depends on the mediodorsal thalamic nucleus91 and 

thalamic orphan receptors92. Higher-order thalamic nuclei also notably 

affect conscious processing by activating infragranular layer cortical 

neurons93 or by coupling or decoupling thalamo-cortical loops and 

cortico-cortical loops94–96. Accordingly, inactivation of these thalamic 

nuclei is associated with disorders of consciousness93,97,98.

The claustrum — a subcortical structure that has been believed  

to be crucial for attention and consciousness99 — also widely projects to 

higher and lower cortical areas to affect global cortical activity. Claus-

tral neurons predominantly innervate cortical interneurons and inhibit 

global cortical activity71,72. Recent studies also suggest that claustrum 

output has more diverse effects on cortical activity70 and underscore 

its role in motor planning100, fear memory encoding101, multisensory 

integration99,102, salience processing103,104 and frontoposterior cortical 

connectivity105. Other subcortical regions — such as the SC, the PPN 

and the basal forebrain — broadly affect cortical regions directly via 

neuromodulators106–109 and synaptically via direct connections110 or 

indirectly through the thalamus (SC → pulvinar → cortex111,112). Neuro-

modulators such as acetylcholine, dopamine, noradrenaline and sero-

tonin are also produced subcortically — acetylcholine in the nucleus 

basalis of Meynert in the basal forebrain; dopamine in the substantia 

nigra pars compacta, ventral tegmental area and retrorubral area (A8) in  

the midbrain and dorsal raphe nuclei in the brainstem; noradrenaline 

in the locus coeruleus in the brainstem; and serotonin in the dorsal 

and median raphe nuclei in the brainstem — and sent to the cortex. 

They strongly influence brain state, arousal and consciousness113–115, 

properties of cortical neurons116, motivation and attentional state117, 

perception118 and memory119,120.

Accumulating evidence also indicates that the hierarchical ana-

tomical connectivity pattern of the cortex cannot explain some basic 

functional properties of visual cortical neurons31,121–123. For instance, 

several brain areas at different hierarchical levels respond almost simul-

taneously to briefly presented visual stimuli124,125. Moreover, direct, 

reciprocal cortico-cortical connections exist between hierarchically 

distant cortical areas (for example, V1 to MT and V4 to IT)35,36 (Fig. 1a), 

and connections previously seen as hierarchical in mouse cortex were 

non-hierarchical lateral connections according to the new analytical 

method35,38, which has made the anatomical connectivity pattern a 

flatter hierarchy.

In sum, the discussed under-represented anatomical and elec-

trophysiological findings in the brain suggest that the dominance of 

cortical hierarchical architectures as in deep learning and predictive 

coding is highly questionable; we believe such architectures are missing 

essential computational principles that the brain uses. The findings dis-

cussed in this section convinced us that these principles are much more 

than feature abstraction through the classical cortical hierarchy and 

led us to the shallow brain hypothesis introduced in the next section.

The shallow brain hypothesis
Although the cortical hierarchy is useful for representing abstract 

features in their context, we propose a processing regime, the shallow 

brain hypothesis, whereby the entire cortex is essentially one giant layer 
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providing contextualized input to subcortical motor and premotor 

centres in the brainstem and spinal cord (Fig. 1d). From the perspective 

of these subcortical centres, both higher and lower cortical areas would 

be part of an array of massively parallel computational units — cortical 

columns, cortical minicolumns or other types of module acting as a 

functional entity in the cortex with distinct inputs and outputs126–128 —  

all of which contribute to the selection of behaviour and thought 

(Fig. 2a, left).

Let us consider the primate oculomotor control network as an 

example. Among many cortical areas, V1, the posterior parietal cor-

tex (PPC) and the frontal eye field (FEF) are known to be involved in 

oculomotor control. The classical, hierarchical view of these areas is 

that signals propagate in the order V1 → PPC → FEF27. However, if the 

connections of these cortical areas with subcortical structures are 

considered, it becomes clear that these cortical areas together with the 

subcortical areas are well described as a shallow architecture (Fig. 2a, 

right): V1, PPC and FEF are all reciprocally connected with thalamic 

regions129–134, project to the SC135–138 and make distinct contributions 

to oculomotor control139–141.

For the shallow brain architecture, the most important cells 

are subcortically projecting cortical L5p neurons77,78,94 (Fig. 1c). In 

many cortical areas they receive direct inputs from thalamic nuclei 

(first and/or higher order) and project back directly to the thalamus 

and subcortical motor and premotor centres, thus forming loops 

between cortical and subcortical areas (Fig. 2b). Brainstem and mid-

brain nuclei such as the SC, PPN and red nucleus also receive the out-

puts of the cortex and project back — directly or polysynaptically — to 

the cortex as well as the thalamus90,111,142–144. This massively parallel 

disynaptic thalamo-cortico-subcortical circuit has received little 

attention, but we hypothesize that it has a major role in the shallow 
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brain architecture, inspired by previous work on the anatomy of the  

thalamo-cortical system64,145.

Thus, the basic unit of the shallow brain architecture is a single 

thalamo-cortico-subcortical loop with L5p neurons as the major driving 

force of the loops (Fig. 2b). Several further lines of evidence support 

this position. First, L5p neurons are the most active excitatory neurons 

in the cortex146 and have been related to sensorimotor control147,148, 

perception77,78 and consciousness94–96,149. Second, subcortically project-

ing L5p neurons receive inputs from distant cortical areas and nearly 

all cell types across layers 1–6 within a cortical column (or a module in 

species where a cortical columnar structure is less clear)126–128 (Fig. 2c). 

Third, L5p cells are thought to learn and represent both simple and 

more abstract features of the external and internal environment94,150. 

According to the shallow brain hypothesis, this is the main role of 

the cortex: to learn representations of different types of feature and 

object, which are then forwarded to subcortical structures. L5p cells 

can compute these features in a context-dependent manner, as they 

have contextual and top-down related processing targeting their api-

cal dendrites94,150. Fourth, it has been demonstrated that predictions 

and prediction errors can be computed at the level of single pyramidal 

cells151. Last, each of these thalamo-cortico-subcortical loops can be 

coupled and decoupled by projections from the higher-order thalamic 

nuclei to the cortical L5p cells94,96, demonstrating how subcortical 

structures can actively control which cortical columns contribute to 

ongoing processing.

According to our hypothesis, every cortical column (or mod-

ule), whether from a lower, intermediate or higher area, represents its 

respective features (simple edges, shapes and faces in visual cortical 

areas) and contributes its output to internal cognitive processing 

and the global selection of behaviour. Thus, this cortical representa-

tion of a hierarchy of features is still very useful, as it allows computa-

tions based on features at different levels of abstraction. However, this 

hierarchical representation of features needs to be supplemented by 

another computation: the combination of features across levels (Fig. 3). 

The distinguishing characteristic of our hypothesis is the shallow-

ness of the neuronal network; cortical areas, higher or lower, directly 

send outputs to the subcortical motor and premotor centres and par-

ticipate in parallel fast thalamo-cortico-subcortical loops (Figs. 1d 

and 2a). The shallowness of the architecture is further supported by 

the higher-order thalamic nuclei that provide shorter (disynaptic) 

thalamo-cortico-subcortical connections between hierarchically 

distant cortical areas42 (Fig. 2b).

The shallow brain hypothesis further posits that any cortical area 

can directly contribute to the selection of action and internal cognitive 

operations. Thus, subcortical systems such as the striatum, thalamus 

or brainstem process massive parallel inputs from the whole cortex 

as from one big layer — a shallow brain (Fig. 2a). Next, we discuss three 

key benefits of the proposed processing regime.

Local learning
Learning in hierarchical cortical networks is complex, as any successful 

outcome needs to be learned across the cortical hierarchy152. In deep 

learning this is commonly done using a learning algorithm called back-

propagation, which adjusts the weights of the artificial neural network 

according to the correctness of the outcome so that a correct output is 

more easily achieved upon the next trial. Backpropagation has several 

aspects, such as requiring the adjustment of weights throughout the 

hierarchy, which make it difficult (albeit not impossible) to be imple-

mented in the brain153,154. Synaptic strength (weight) adjustment would 

be easier to implement in the shallow brain architecture, where each 

cortical module can provide direct monosynaptic inputs to subcorti-

cal areas. For example, from the viewpoint of the striatum, the whole 

cortex is one very large layer providing excitatory input (Fig. 1c), so, 

in principle, only corticostriatal synapses need to be strengthened or 

weakened for reinforcement learning155,156. This does not solve the ques-

tion of how representation learning happens in the cortex but, rather, 

underscores the benefit of having the shallow brain processing regime 

to complement any learning based on cortical plasticity. It is likely that 

the cortex is needed for learning novel complex stimulus–response 

mappings157,158, but once a mapping has been established between the 

output of a cortical column and the appropriate response, the shallow 

brain regime can take over.

Speed
There is no need for serial processing of inputs from the input layer all 

the way to the final output layer. Such serial processing would suffer 

Fig. 1 | Deep and shallow architectures. a, Common view of the cortical 

hierarchy that is the basis for many deep learning and predictive coding 

hierarchical (deep) architectures. Cortical areas associated with visual 

information processing are shown as an example. The lowest area, the primary 

visual cortex (V1), processes a class of features and feeds the processed 

information forward to higher areas such as the inferior temporal cortex (IT), 

where more abstract information is processed and sent to subcortical areas. Note 

that cortical areas are connected bidirectionally — via feedforward and feedback 

connections — and laterally (between the middle temporal cortex (MT) and V4). 

b, Criteria for classifying connections between cortical areas (for example, 

V1, V2 and V4) as feedforward (top), lateral (middle) and feedback (bottom). 

Importantly, these criteria also reveal the direct, reciprocal connections 

between hierarchically distant cortical areas. A cortical column is depicted as the 

computational unit of any cortical area at any point within the hierarchy, with 

the six layers collapsed into three layers for simplicity. Termination patterns are 

depicted in the central column, preferentially in layer 4 (F pattern; feedforward), 

across all layers (C pattern; lateral), and in upper (supragranular (S)) and lower 

(infragranular (I)) layers avoiding layer 4 (M pattern; feedback). Laminar origin 

from a single layer (left column) is either S or I, and thus feedforward or feedback, 

respectively. Bilaminar (B) origins from two layers (right column) either terminate 

in the middle layers (F pattern; feedforward), terminate in all layers (C patten; 

lateral) or terminate predominantly in upper S and I layers (M pattern; feedback). 

The existence of these distinct termination patterns strongly supports the 

existence of a deep cortical hierarchy. c, Retrograde labelling in a sagittal section 

of the mouse brain showing that across all hierarchical cortical areas, cortical 

layer 5 pyramidal (L5p) neurons (I) send axonal fibres that project to the basal 

pontine nucleus (BPN) in the brainstem. Despite the existence of a cortical 

hierarchy, from the perspective of the BPN, there is no distinction between 

higher and lower cortical areas, as if the cortex is flat, shallow and just one 

giant layer. d, Cortical areas that are higher and lower in the hierarchy project 

directly to subcortical regions, including the brainstem, thalamus and striatum. 

From the perspective of these subcortical areas, the cortical areas are ‘flat’; thus, 

the architecture is shallow. For the sake of graphical clarity, lines between cortical 

areas indicate reciprocal connections; other subcortical areas as well as their 

connections with cortical and subcortical areas have been omitted. FST, fundus 

superior temporal cortex; MST, medial superior temporal cortex; PPC, posterior 

parietal cortex; STP, superior temporal polysensory; TEO, temporal occipital 

cortex; VIP, ventral intraparietal cortex. Part a adapted with permission from  

ref. 207, Elsevier. Part b adapted, with permission from ref. 27, OUP. Part c 

adapted with permission from ref. 75, Elsevier.
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from the slowness of polysynaptic transmission and the long time 

constant of biological neurons159. In this sense, a cortical hierarchy can 

perform complex, context-sensitive computations, but may pay the 

price in terms of sluggishness. The shallow brain hypothesis suggests 

that interactions between cortical and subcortical areas are shallower 

(and thus faster), regardless of how distant two areas are physically or 

within the cortical hierarchy; interactions between cortical areas should 

be either direct or run via a minimum number of synapses (for exam-

ple, via subcortical regions such as higher-order thalamic nuclei)42,160. 

Moreover, to influence action and cognition, a cortical column simply 

has to affect the subcortical motor and premotor centres, which are 

one synapse away. For example, the primate FEF — a hierarchically high 
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Fig. 2 | The shallow brain hypothesis. a, A distinguishing feature of the brain 

is the shallowness of its architecture; higher and lower cortical areas receive 

sensory signals from the environment through the thalamus and/or brainstem 

via a small number of synapses, and each cortical area can send its outputs 

directly to the sensorimotor and premotor centres (such as the brainstem 

reticular formation, red nucleus and spinal cord). For graphical clarity, other 

connections are omitted (left panel). The oculomotor control network provides 

an example of a shallow architecture. Hierarchically, the frontal eye field 

(FEF) is the highest whereas the primary visual cortex (V1) is the lowest. The 

classical, hierarchical view of these areas is that signals propagate in the order 

V1 → posterior parietal cortex (PPC) → FEF. However, all of these cortical areas 

are directly and reciprocally connected with subcortical (thalamic) regions 

and project to the subcortical superior colliculus (SC), which is well described 

in a shallow architecture (right panel). b, The fast, disynaptic thalamo-cortico-

subcortical circuit that we hypothesize has an important role in the shallow 

architecture. Cortical layer 5 pyramidal (L5p) neurons that directly receive 

(first-order and/or higher-order) thalamic inputs and project to subcortical areas 

are highlighted at the centre of such loops. Duplicated L5p neurons indicate 

exemplars in different cortical columns or other types of computational unit. 

For graphical clarity, other connections and cell types are omitted. c, Simplified 

cortical cell types in a columnar arrangement that contains various excitatory 

pyramidal (black) and inhibitory interneurons (coloured) across six layers. In 

the human brain, each cortical column contains in the order of 10,000 cells of 

various cell types. These various cell types form a highly sophisticated network; 

thus, a mini-hierarchy of processing is argued to exist within a cortical column. 

Moreover, dendrites of pyramidal neurons do not merely receive inputs from 

other cells but have substantial computational capacities, and there exist 

local recurrent connections within each cortical column. All these anatomical 

and physiological properties together endow each cortical column with an 

extraordinary computational capacity. LGN, lateral geniculate nucleus; PPRF, 

paramedian pontine reticular formation; SST, somatostatin; VIP, vasoactive 

intestinal polypeptide.
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cortical area in the frontal lobe — directly receives thalamic inputs and 

directly sends its outputs to the brainstem motor and premotor centres 

(Fig. 2a, right). Thus, the processing pathways — even those involving 

hierarchically high cortical areas — can be very shallow and fast.

Compositionality and flexible combination of features
The shallow brain architecture allows multiple representations 

across the cortical hierarchy to contribute to the selection of overt 

action and cognitive operations (Fig. 3). In some tasks and situations, 

lower levels of cortical processing may compute the details (for exam-

ple, visual stimulus orientation) as necessary to make a behavioural 

decision. By contrast, a hierarchical computation would require the 

details from lower levels of cortical processing to be propagated 

throughout the cortical hierarchy. However, according to the shallow 

brain hypothesis, lower levels of cortical processing can contribute 

directly to the selection of thought and action by projecting to sub-

cortical centres, where the output of lower and higher cortical areas 

can be combined (Fig. 3). More generally, the output of any cortical 

column (or module) has direct access to subcortical centres, thus 

allowing for compositionality, which is the ability to combine simpler 

features for complex representations161,162. According to our hypothesis, 

the outputs of cortical columns constitute the primitives, which are 

flexibly combined at the level of subcortical areas (Fig. 3 and Box 1). 

A concrete prediction of the shallow brain architecture is that when, 

for any given task, low-level (orientation) and high-level (face) informa-

tion needs to be combined, this is done by combining the outputs of 

the respective cortical columns at the level of subcortical areas (Fig. 3).

Similarly, when low-level and high-level processed information 

would compete to invigorate conflicting decisions, this competition 

can be resolved in subcortical areas, not in the cortex. This may be 

more efficient, as low and high cortical areas are anatomically more 

remote from each other than their outputs at the level of the thalamus 

or other subcortical regions, where many cortical outputs are funnelled 

together (Figs. 1d and 3). Thus, cortical computation adds a layer of 

contextual, combinatorial complexity, which can be integrated into 

subcortical decision-making. Moreover, the communication lines 

between the cortex and subcortical centres may enable the brain to 

avoid conflict in case of discrepancy between cortical and subcortical 

computations when solving a task. Cortical contextual, combinato-

rial processing is especially needed when dealing with novel stimuli 

or situations157,163. However, if the cortex has already developed the 

representations required for solving the task, the subcortical structures 
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Fig. 3 | New computational potential in shallow architectures. The human 

neocortex consists of approximately 100,000 cortical columns. The shallow 

architecture we propose combines such massive outputs potentially from 

all — higher and lower — cortical columns, which is markedly different from the 

conventional hierarchical structure of deep learning and predictive coding 

networks, in which only the highest layer can provide the output. Here, this 

potential for combinations is illustrated by the convergence of low-level 

(lines, edges), intermediate-level (simple shapes) and high-level (face) 

information. Inhibitory projections (black) from the basal ganglia (BGa) to 

subcortical motor and premotor centres (in the thalamus and brainstem) are 

proposed to serve as the selection mechanism for the convergent information 

from excitatory outputs from cortical columns in lower, intermediate and 

higher cortical areas (red). FB, feedback; FF, feedforward; SST, somatostatin; 

VIP, vasoactive intestinal polypeptide.
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can directly use them in a shallow brain architecture. Hence, although 

there is progression of more abstract features when going up the corti-

cal hierarchy, subcortical areas can process and combine information 

from all these levels flexibly (Box 1).

A question that arises from the shallow brain hypothesis is how the 

subcortical structures select and combine all this information. This is 

discussed in the next section.

Implications of the shallow brain hypothesis
A fast, robust computational capacity of a parallel computational 

architecture — the subsumption architecture164 — was proposed early 

on in artificial intelligence and robotics165. Instead of successively com-

puting abstract features from sensory areas (as assumed in predictive 

coding and deep learning), a subsumption architecture decomposes 

the complete robot behaviour into behavioural competences (for 

example, to avoid an obstacle, to reach a specific goal), each of which is 

implemented by a control layer. Importantly, all layers of the subsump-

tion architecture receive sensory information and produce behavioural 

outputs in parallel164 — similar to what we propose for the shallow brain 

architecture (Figs. 1d and 2a). At this point, the computational princi-

ples of the shallow brain architecture are relatively unknown, but what 

is already clear is that it should be completely different from principles 

used in purely hierarchical computation (such as deep learning). Thus, 

implications of the shallow brain hypothesis are wide-reaching.

First, a longstanding mystery in neuroscience is how our train of 

thought, intelligent behaviour and cognitive functions are made possi-

ble despite a slow synaptic transmission and membrane time constant —  

followed by an even longer refractory period after spiking159 (see ref. 166 

for a proposal to overcome this slowness). If our intelligent behaviour 

and cognitive functions depend on hierarchical processing within the 

cortex, processing time increases as the number of areas (and thus  

the number of synapses to pass through) increases (Fig. 1a). By contrast, 

if the brain’s network is essentially shallow, as we hypothesize, the 

problem of neuronal sluggishness disappears. Here, we are not claim-

ing that hierarchical processing would be irrelevant but that its slug-

gishness can be avoided via a set of fast pathways — cortico-subcortical 

projections and direct cortico-cortical or trans-thalamic connections 

between hierarchically distant areas (Fig. 2a).

One might ask how it is possible for such a shallow architecture 

to produce or contribute to our rich internal representations of the 

world, including our body. A deep hierarchical architecture permits 

progressive encoding of abstract features for categorization, which is 

why a deep hierarchical architecture is more intuitively appealing for 

many people and has been widely adopted in machine learning. How-

ever, deep learning hierarchical architectures commonly assume that 

each layer consists of simplistic point neurons that merely summate 

inputs, and this assumption substantially underestimates the com-

putational capacity of the microcircuit in each cortical column. Each 

cortical microcircuit contains a large variety of neurons, excitatory 

and inhibitory, that form a highly sophisticated network across the six 

layers in a cortical column83,167 (Fig. 2c). The argument can be made that, 

even within each cortical microcircuit, a mini-hierarchy of processing 

exists (namely from layer 4 to layer 2/3 to layers 5 and 6 (ref. 168), but 

see refs. 169–171 for other pathways). Moreover, dendrites have been 

classically considered as structures that merely receive inputs from 

other cells, but abundant evidence indicates that they possess sub-

stantial computational capacities172,173 (see refs. 174–179 for models 

that incorporate dendritic computational capacities). Consequently, 

single cortical pyramidal neurons have been approximated by a deep 

neural network with five to eight layers180. Thus, the shallow architec-

ture we present here (Fig. 2a) highlights the substantial computational 

capacity of the microcircuit in each cortical column.

Box 1

Flexibility in cortical and subcortical computations
Computational flexibility can be considered at two timescales. The 

first is the slow timescale that applies to learning and adaptation.  

The second is the fast timescale of behavioural decision-making and 

selection of actions and cognitive operations (in the milliseconds to 

seconds range). Here we focus mostly on the fast timescale and define 

flexibility as the ability of a neural system to adjust its operations 

adaptively, on the basis of task demands, behavioural feedback 

and properties of the stimulus and context reacted upon.

Various candidate mechanisms may contribute to computational 

flexibility. A key question is how different combinations of cortical 

feature representations can be rapidly selected. We suggest that 

attentional brain mechanisms can drive this selection process, 

aided by prefrontal regions coding task rules208–211. A frontal–parietal 

network has been identified that harbours key resources for selective 

attention212,213. Influences of attention are expressed in the visual 

cortex by, for instance, reduced cross-correlations214, increased 

gain modulation215 and regional filling effects in figure–ground 

segmentation216, but it is notable that this frontal–parietal network 

also exerts effects on at least some subcortical structures213,217. 

Vice versa, many subcortical structures also regulate attention, 

cognitive flexibility and/or arousal. For instance, the thalamic 

pulvinar and reticular nuclei regulate visual attention218 and switching 

between cortical representations219, whereas the intralaminar 

thalamic nuclei function in cortical and subcortical arousal220,221. 

Moreover, the neuromodulatory cell groups in the locus coeruleus, 

raphe nuclei and pedunculopontine nucleus (PPN) receive cortical 

inputs and exert arousing and attentional effects throughout the 

cortex, basal ganglia (BGa) and other subcortical structures. Recent 

studies reveal modular targeting of neuromodulatory outputs to 

the cortex and related areas, suggesting selective modulation of 

particular cortical regions and representations222–224. Finally, when 

considering how the BGa may help to select which cortical inputs 

gain access to subcortical processing, it is of note that they have 

been implicated in attention and cognitive flexibility as well225,226. 

Thus, although there is no shortage of mechanisms underlying 

computational flexibility in cortico-subcortical architectures, 

further studies are required to examine which mechanisms are 

most prominent under different circumstances.



Nature Reviews Neuroscience

Perspective

In the human brain, each cortical column contains in the order of 

10,000 cells of various cell types, and there are approximately 100,000 

cortical columns128. Given the existence of local recurrent connections 

within each cortical column181,182, each cortical column can be seen as 

a recurrent neural network. The shallow architecture can be represented 

as a massive array of parallel recurrent neural networks that not only pro-

ject subcortically but also connect with each other via cortico-cortical 

and trans-thalamic connections. In the shallow brain architecture, this 

array of cortical columns processes information in parallel and provides 

their outputs through the L5p neurons to subcortical motor and premo-

tor centres (Fig. 2). The cortical hierarchy is used to represent progres-

sively more abstract features in their context7–9. The shallow architecture 

we propose flexibly combines many outputs from cortical columns of 

every hierarchical level (Fig. 3), which is strikingly different from con-

ventional hierarchical structures in deep learning and predictive coding 

networks, where only the highest layer provides the output. Another 

component that may further enhance the computational capacity of the 

shallow architecture is the non-hierarchical lateral connections between 

cortical areas35,183–185. These connections, in theory, enable integration 

of multimodal information processing at multiple hierarchical levels. 

Thus, these non-hierarchical intracortical connections provide an addi-

tional degree of flexibility at the cortical and subcortical levels, which 

potentially facilitates multimodal sensorimotor control.

The shallow architecture of the brain we propose also raises novel 

and interesting questions. For instance, how is the solution to any given 

task computed if it is dispersed among so many parallel processors? 

Are there subcortical mechanisms for implementing internal competi-

tion to select an optimal action choice — for example, winner takes all 

(Fig. 3)? On the basis of anatomical data, the most likely candidate we 

propose for this mechanism is the set of inhibitory projections from 

the basal ganglia (BGa) to the diencephalon, mesencephalon and brain-

stem. Besides the extensively studied inhibitory projections from the 

BGa to thalamic nuclei such as the anterior, centromedian, parafascicu-

lar and mediodorsal nuclei186–188, less exhaustively studied yet impor-

tant for our hypothesis are BGa projections to the brainstem189–191. BGa 

targets in the brainstem include the PPN and mesencephalic locomotor 

region, retrorubral area (A8 dopaminergic cell group), red nucleus and 

SC108,191–194. For example, in the oculomotor control system (Fig. 2a, 

right), the substantia nigra pars reticulata sends GABAergic projections 

to the SC as well as the thalamus108,195. Together with the inhibitory BGa 

projections to the thalamus, these inhibitory BGa projections to the 

brainstem are proposed to provide the mechanism for flexible selection 

of which cortically receptive cell groups in the motor and premotor 

centres are activated, and thus which cortico-subcortical projections 

remain shut down by inhibition (Fig. 3). For instance, BGa projections 

that inhibit all except one descending motor output from the cortex 

Glossary

Bayesian inference

A method of statistical analysis that 

is grounded in Bayes’ theorem, which 

describes how the probability of a 

hypothesis (posterior probability) is 

updated as new data (evidence) become 

available, given prior knowledge about 

the hypothesis (prior probability).

Cortico-cortical loops

Neural circuits that connect different 

regions of the cerebral cortex to one 

another, allowing communication and 

integration of information across various 

cortical areas. These loops can be either 

short range, connecting adjacent or 

nearby cortical regions, or long range, 

linking distant regions of the cortex.

Deep hierarchy

A hierarchical structure consisting 

of many layers (roughly analogous 

to cortical areas) through which 

information from the external world is 

processed step by step.

Deep learning architectures

Structured configurations of 

hierarchical, interconnected layers 

of artificial neurons, or nodes, in a 

neural network. Common types of 

deep learning architecture include 

feedforward convolutional neural 

networks and recurrent neural networks.

Hierarchical inference

The process of drawing conclusions 

from data wherein parameters are 

organized into different levels or layers. 

In hierarchical Bayesian inference, 

Bayesian statistics are employed within 

a layered framework, integrating prior 

knowledge at multiple levels to refine 

posterior distributions.

Higher-order thalamic nuclei

Thalamic nuclei can be categorized 

anatomically into first-order and 

higher-order nuclei. First-order nuclei 

receive driving afferents from ascending 

pathways, whereas the higher-order 

nuclei receive driving afferents from 

cortical layer 5 pyramidal (L5p) neurons. 

Notable examples of higher-order 

thalamic nuclei include the pulvinar  

and the medial dorsal nucleus.

Non-hierarchical lateral 

connections

Connections made between two 

cortical areas that are not distinguished 

hierarchically (for instance, primary 

auditory and visual cortex). This 

connectivity pattern is illustrated in 

Fig. 1b.

Recurrent connections

Connections in which the output of 

a neuron at a given layer is fed back 

as an input to either the same layer or 

a previous layer. This creates a loop 

in the network, allowing information, 

for instance, to persist and be reused 

across sequential steps.

Recurrent neural network

A class of neural networks in which 

connections between nodes form 

directed cycles, enabling the retention 

of information from previous inputs. 

This sequential memory feature makes 

recurrent neural networks suitable for 

tasks involving time-series or sequential 

data.

Reinforcement learning

A machine learning method in  

which an agent makes decisions and 

receives reinforcing feedback to train 

the network to improve its output (for 

example, reward for desired behaviours, 

punishment for behaviour resulting in 

undesirable output).

Shallow architectures

Architectures that do not consist of a 

deep hierarchy. Shallow architectures 

instead have a minimum number of 

layers.

Shallow processing

Computations carried out by a shallow 

architecture, namely in a few steps 

instead of tens or hundreds of layers of 

processing.

Thalamo-cortical loops

Bidirectional pathways between the 

thalamus and the cerebral cortex. 

Thalamo-cortical loops play a vital role 

in the regulation of consciousness, 

attention and sensory processing, 

and have been implicated in several 

neurological and psychiatric disorders.

Trans-thalamic connections

Connections made between two brain 

regions via the thalamus.
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result in the selection of a particular target cell group for effectuating 

a particular action. In addition, the BGa exert inhibitory control over 

widespread release of neuromodulators, such as acetylcholine from 

the PPN and dopamine from the retrorubral area.

However, not only can the subcortical areas perform selection 

of cortico-subcortical projections at the level of subcortical areas, 

but also subcortical areas can considerably influence the selection of 

cortico-subcortical projections at the level of cortical processing (see 

also Box 1). One key pathway for this influence at the level of cortical 

processing comes from projections from higher-order thalamic nuclei 

to the cortex, which can bias whether cortical columns are strongly or 

weakly activated. Furthermore, two different types of projection from 

the higher-order thalamic nuclei to different layers of the cortex exist 

(Fig. 2b). The thalamo-cortical projection into layer 1 not only activates 

distal apical dendrites of subcortically projecting pyramidal neurons 

but also activates interneurons that strongly influence the activity 

of the receiving cortical column196–198 (Fig. 2c). The thalamo-cortical 

projection into the middle layer has been shown to couple or decou-

ple cortical processing streams94,96. Thus, the higher-order thalamus 

is in a powerful position to select which cortical computations reach 

subcortical areas at the level of cortical processing.

Summary and future directions
In this Perspective, we have questioned the current dominance of hier-

archical cortical structures used in deep learning and predictive coding. 

Instead, on the basis of neuroanatomical and electrophysio logical 

evidence, we propose the shallow brain hypothesis, which provides 

a new perspective on massively parallel computations in the brain. 

We have highlighted how each higher or lower cortical area is recip-

rocally connected with subcortical regions and that we have not yet 

fully understood the extraordinary computational capacity of each 

cortical microcircuit. Our hypothesis posits that the brain has a shallow 

architecture — consisting of a massive array of parallel recurrent neural 

networks, each of which not only projects subcortically but also pos-

sesses a highly sophisticated microcircuit — which enables fast yet pow-

erful computations that exploit the shallow cortico-subcortical loops 

and the computational capacity of cortical hierarchy that is ‘laterally’ 

formed between the parallel networks (Fig. 3). We hope that the shal-

low brain hypothesis inspires researchers to focus more on developing 

computational models that take into account this shallow architec-

ture with a massive array of parallel thalamo-cortico-subcortical 

loops. To stimulate such developments, we make some testable  

predictions below.

We have emphasized the computational power of cortical micro-

circuits. However, the key to the shallow brain hypothesis is that the 

genuine power of cortical microcircuits can be understood only when 

their interactions with the subcortex are fully taken into account. 

Some exciting work has demonstrated how cortical computations 

are maintained and supported by the thalamus91,199,200, but the shallow 

brain hypothesis predicts that this phenomenon is widespread — when 

cortico-subcortico-cortical loops are specifically manipulated, corti-

cal activity will be substantially affected. Systematic studies using 

optogenetic and pharmacogenetic manipulations must be done to 

examine the contributions of different subcortical areas and loops. 

For example, although the contribution of cortical areas to learning 

is widely accepted, the contribution of the higher-order thalamus (for 

example, pulvinar, posteromedial and mediodorsal nuclei) to learning 

is far less recognized201,202. Our hypothesis predicts a crucial role of 

such thalamo-cortical loops in learning; for example, optogenetic or 

pharmacological disruption of these specific thalamo-cortical path-

ways may impair learning, even when cortico-cortical pathways are 

intact.

The shallow brain hypothesis posits that subcortically project-

ing L5p neurons are the key components that enable fast yet power-

ful computation by the shallow architecture because they directly 

receive subcortical inputs and send their outputs to subcortical regions 

(Fig. 2b). During learning, slow hierarchical computations involving 

various cell types in multiple cortical areas take place, but we predict 

that as learning progresses, plastic changes in synapses shape cortical 

circuits such that these subcortically projecting L5p neurons take over 

the hierarchical computation and perform it faster. This prediction is 

consistent with previous observations in imaging studies during rodent 

motor learning147 but might be generalized to other cortical areas and 

other types of learning (such as representation learning).

We predict that computational models and artificial intelligence 

implementations of the shallow brain hypothesis will outperform 

conventional architectures in some applications — in particular, in 

tasks that require compositionality203,204 and a flexible combina-

tion of features that are computed at different levels of the hierar-

chy. Also, the architecture presented here can lay the backbone for 

novel artificial intelligence algorithms such as modular deep learn-

ing architectures205,206. Moreover, our hypothesis predicts that when 

low-level information and high-level information need to be combined, 

then this is done not in the cortex but, rather, by combining the outputs 

of the respective cortical processing areas at the level of subcortical 

areas (Fig. 3). Similarly, when low-level information and high-level 

information compete, this competition is resolved in subcortical areas, 

not in the cortex. Last, the BGa are known to project to the thalamus 

and brainstem, but little is known as to whether these projections are 

independent of each other; our hypothesis predicts that these BGa–

thalamus and BGa–brainstem connections are not independent of 

each other but, rather, are orchestrated to flexibly combine or regulate 

massively parallel cortical outputs to these subcortical regions.

A deeper understanding of the computational capacity of cortical 

microcircuits, each of which reciprocally interacts with subcortical 

regions, as well as subcortical mechanisms for flexible combination 

of cortical outputs and the functional role of direct cortico-cortical or 

trans-thalamic connections between hierarchically distant areas, may 

revise, prove or disprove the shallow brain hypothesis.

Published online: xx xx xxxx
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